物联网网络性能建模

S. Sankaran
{"title":"物联网网络性能建模","authors":"S. Sankaran","doi":"10.1109/ANTS.2016.7947807","DOIUrl":null,"url":null,"abstract":"Internet of Things (IoTs) is gaining increasing significance due to real-time communication and decision making capabilities of sensors integrated into everyday objects. Predicting performance in IoTs is critical for detecting performance bottlenecks, designing optimal sleep/wake-up schedules and application-aware performance tuning. However, performance prediction becomes a significant challenge in IoTs due to varying needs of applications coupled with the resource constrained nature of sensors. In this work, we analyze the impact of factors affecting performance in IoT networks using simulation based models. Further, an analytical framework is developed to model the impact of individual node behavior on overall performance using Markov chains. In particular, we derive steady state transition probabilities of transmit and receive states using protocol execution traces and further utilize them towards predicting per-flow throughput. Our proposed model is generic in that it can be applied across domains. Accuracy of the model is evaluated by comparing the predictions with the actual estimates obtained using simulations.","PeriodicalId":248902,"journal":{"name":"2016 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Modeling the performance of IoT networks\",\"authors\":\"S. Sankaran\",\"doi\":\"10.1109/ANTS.2016.7947807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Internet of Things (IoTs) is gaining increasing significance due to real-time communication and decision making capabilities of sensors integrated into everyday objects. Predicting performance in IoTs is critical for detecting performance bottlenecks, designing optimal sleep/wake-up schedules and application-aware performance tuning. However, performance prediction becomes a significant challenge in IoTs due to varying needs of applications coupled with the resource constrained nature of sensors. In this work, we analyze the impact of factors affecting performance in IoT networks using simulation based models. Further, an analytical framework is developed to model the impact of individual node behavior on overall performance using Markov chains. In particular, we derive steady state transition probabilities of transmit and receive states using protocol execution traces and further utilize them towards predicting per-flow throughput. Our proposed model is generic in that it can be applied across domains. Accuracy of the model is evaluated by comparing the predictions with the actual estimates obtained using simulations.\",\"PeriodicalId\":248902,\"journal\":{\"name\":\"2016 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANTS.2016.7947807\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANTS.2016.7947807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

由于将传感器集成到日常物品中,具有实时通信和决策能力,物联网(iot)正变得越来越重要。预测物联网的性能对于检测性能瓶颈、设计最佳睡眠/唤醒计划和应用程序感知性能调优至关重要。然而,由于应用需求的不同以及传感器资源的有限性,性能预测成为物联网中的一个重大挑战。在这项工作中,我们使用基于仿真的模型分析了影响物联网网络性能的因素的影响。此外,开发了一个分析框架,使用马尔可夫链来模拟单个节点行为对整体性能的影响。特别是,我们使用协议执行跟踪推导了发送和接收状态的稳态转换概率,并进一步利用它们来预测每流吞吐量。我们提出的模型是通用的,因为它可以跨领域应用。通过将预测结果与模拟得到的实际估计结果进行比较,评估了模型的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling the performance of IoT networks
Internet of Things (IoTs) is gaining increasing significance due to real-time communication and decision making capabilities of sensors integrated into everyday objects. Predicting performance in IoTs is critical for detecting performance bottlenecks, designing optimal sleep/wake-up schedules and application-aware performance tuning. However, performance prediction becomes a significant challenge in IoTs due to varying needs of applications coupled with the resource constrained nature of sensors. In this work, we analyze the impact of factors affecting performance in IoT networks using simulation based models. Further, an analytical framework is developed to model the impact of individual node behavior on overall performance using Markov chains. In particular, we derive steady state transition probabilities of transmit and receive states using protocol execution traces and further utilize them towards predicting per-flow throughput. Our proposed model is generic in that it can be applied across domains. Accuracy of the model is evaluated by comparing the predictions with the actual estimates obtained using simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信