建立和使用三维机械地球模型的一致方法

B. Cuesta, S. Vorobiev
{"title":"建立和使用三维机械地球模型的一致方法","authors":"B. Cuesta, S. Vorobiev","doi":"10.2118/190799-MS","DOIUrl":null,"url":null,"abstract":"\n The document presents a consistent method to build 3D Mechanical Earth Models (3D MEM). It is based on a rock physics study to derive field specific correlations between mechanical properties and interpreted petrophysical quantities. The 3D MEMs built using this methodology yield robustness and consistency when matching to the measured minimum stress. They also display good predictive capabilities making them valuable for operational design.\n This method consists of conducting a preliminary rock physics study in order to obtain correlations between the mechanical properties (elastic moduli and strength), of the various formations that are considered, and basic interpreted quantities which are readily available in most 3D geological models (porosity or mineralogy). The correlations are used to build a 3D MEM which is consistent with both the 3D geological model and the 1D geomechanical interpretation. It is also possible to extend the correlations by linking raw log data to rock mechanical properties.\n The model was tested against field case study to verify its predictiveness. Minimum stresses calculated by the 3D MEM matched well to the measured values obtained from mini-frac tests performed at various locations. Ultimately it permits to better forecast the material properties (in 3D) as well as the effective stress tensor (in 4D). The 3D MEMs were used to evaluate the risks for infill drilling, and for completion purposes. Performing this type of preliminary rock physics study has a number of benefits. Firstly, to help identify which logging suite should be run to characterize the geomechanical properties of a given formation, and secondly it can be used to derive correlations between raw log data and geomechanical properties. These correlations can be applied during operations for real time decision making purposes when there is not yet a petrophysical interpretation available.\n The novelty of the method introduced lies in the systematic and coherent integration of data to build a consistent geomechanical model (3D or 1D), that exhibits a robust predictive capability and shows the value of 3D MEM for the design of drilling and completion operations.","PeriodicalId":339784,"journal":{"name":"Day 2 Tue, June 12, 2018","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Consistent Method to Build and Use a 3D Mechanical Earth Model\",\"authors\":\"B. Cuesta, S. Vorobiev\",\"doi\":\"10.2118/190799-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The document presents a consistent method to build 3D Mechanical Earth Models (3D MEM). It is based on a rock physics study to derive field specific correlations between mechanical properties and interpreted petrophysical quantities. The 3D MEMs built using this methodology yield robustness and consistency when matching to the measured minimum stress. They also display good predictive capabilities making them valuable for operational design.\\n This method consists of conducting a preliminary rock physics study in order to obtain correlations between the mechanical properties (elastic moduli and strength), of the various formations that are considered, and basic interpreted quantities which are readily available in most 3D geological models (porosity or mineralogy). The correlations are used to build a 3D MEM which is consistent with both the 3D geological model and the 1D geomechanical interpretation. It is also possible to extend the correlations by linking raw log data to rock mechanical properties.\\n The model was tested against field case study to verify its predictiveness. Minimum stresses calculated by the 3D MEM matched well to the measured values obtained from mini-frac tests performed at various locations. Ultimately it permits to better forecast the material properties (in 3D) as well as the effective stress tensor (in 4D). The 3D MEMs were used to evaluate the risks for infill drilling, and for completion purposes. Performing this type of preliminary rock physics study has a number of benefits. Firstly, to help identify which logging suite should be run to characterize the geomechanical properties of a given formation, and secondly it can be used to derive correlations between raw log data and geomechanical properties. These correlations can be applied during operations for real time decision making purposes when there is not yet a petrophysical interpretation available.\\n The novelty of the method introduced lies in the systematic and coherent integration of data to build a consistent geomechanical model (3D or 1D), that exhibits a robust predictive capability and shows the value of 3D MEM for the design of drilling and completion operations.\",\"PeriodicalId\":339784,\"journal\":{\"name\":\"Day 2 Tue, June 12, 2018\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, June 12, 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/190799-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, June 12, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/190799-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种建立三维力学地球模型(3D MEM)的统一方法。它基于岩石物理研究,推导出力学性质与解释岩石物理量之间的特定相关性。使用该方法构建的3D MEMs在与测量的最小应力匹配时具有鲁棒性和一致性。它们还显示出良好的预测能力,这使它们对操作设计很有价值。该方法包括进行初步的岩石物理研究,以获得所考虑的各种地层的力学特性(弹性模量和强度)与大多数3D地质模型(孔隙度或矿物学)中易于获得的基本解释量之间的相关性。利用这些相关性建立了与三维地质模型和一维地质力学解释相一致的三维MEM模型。通过将原始测井数据与岩石力学特性联系起来,也可以扩展相关性。通过现场案例研究验证了模型的预测能力。3D MEM计算的最小应力与在不同位置进行的小型压裂测试的测量值吻合良好。最终,它允许更好地预测材料性能(在3D中)以及有效应力张量(在4D中)。3D MEMs用于评估填充钻井和完井的风险。进行这种类型的初步岩石物理研究有很多好处。首先,它可以帮助确定应该使用哪种测井套件来描述给定地层的地质力学性质,其次,它可以用来推导原始测井数据与地质力学性质之间的相关性。在没有岩石物理解释的情况下,这些相关性可以在作业过程中用于实时决策。该方法的新颖之处在于系统、连贯地整合数据,以建立一致的地质力学模型(3D或1D),该模型具有强大的预测能力,并显示了3D MEM对钻完井作业设计的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Consistent Method to Build and Use a 3D Mechanical Earth Model
The document presents a consistent method to build 3D Mechanical Earth Models (3D MEM). It is based on a rock physics study to derive field specific correlations between mechanical properties and interpreted petrophysical quantities. The 3D MEMs built using this methodology yield robustness and consistency when matching to the measured minimum stress. They also display good predictive capabilities making them valuable for operational design. This method consists of conducting a preliminary rock physics study in order to obtain correlations between the mechanical properties (elastic moduli and strength), of the various formations that are considered, and basic interpreted quantities which are readily available in most 3D geological models (porosity or mineralogy). The correlations are used to build a 3D MEM which is consistent with both the 3D geological model and the 1D geomechanical interpretation. It is also possible to extend the correlations by linking raw log data to rock mechanical properties. The model was tested against field case study to verify its predictiveness. Minimum stresses calculated by the 3D MEM matched well to the measured values obtained from mini-frac tests performed at various locations. Ultimately it permits to better forecast the material properties (in 3D) as well as the effective stress tensor (in 4D). The 3D MEMs were used to evaluate the risks for infill drilling, and for completion purposes. Performing this type of preliminary rock physics study has a number of benefits. Firstly, to help identify which logging suite should be run to characterize the geomechanical properties of a given formation, and secondly it can be used to derive correlations between raw log data and geomechanical properties. These correlations can be applied during operations for real time decision making purposes when there is not yet a petrophysical interpretation available. The novelty of the method introduced lies in the systematic and coherent integration of data to build a consistent geomechanical model (3D or 1D), that exhibits a robust predictive capability and shows the value of 3D MEM for the design of drilling and completion operations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信