S. L. Fernandes, B. Bregadiolli, A. Véron, F. Nüesch, M. A. Zaghete, Carlos Frederico de Oliveira Graeff
{"title":"钙钛矿太阳能电池中CH3NH3PbI3沉积方法的迟滞依赖性","authors":"S. L. Fernandes, B. Bregadiolli, A. Véron, F. Nüesch, M. A. Zaghete, Carlos Frederico de Oliveira Graeff","doi":"10.1117/12.2236855","DOIUrl":null,"url":null,"abstract":"CH3NH3PbI3 perovskite solar cells are one of the most exciting technologies in the renewable energy field, resulting in over 20% power conversion efficiency. Deep understanding of the working principle is now required to turn the high efficiency solar cells into a reliable technology. In this work we have explored the role of deposition method on the crystallinity of perovskite films and its influence on the hysteresis behavior of the current-voltage characteristics. In addition Nb2O5 was used as hole blocking layer and its influence is also discussed. We have found that hysteresis is strongly dependent on both; perovskite deposition method and Nb2O5 thickness. The ideal condition where the hysteresis is suppressed or minimized was achieved by using the sequential deposition method for the perovskite semiconductor and a hole blocking layer of 50 nm.","PeriodicalId":140444,"journal":{"name":"Optics + Photonics for Sustainable Energy","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Hysteresis dependence on CH3NH3PbI3 deposition method in perovskite solar cells\",\"authors\":\"S. L. Fernandes, B. Bregadiolli, A. Véron, F. Nüesch, M. A. Zaghete, Carlos Frederico de Oliveira Graeff\",\"doi\":\"10.1117/12.2236855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CH3NH3PbI3 perovskite solar cells are one of the most exciting technologies in the renewable energy field, resulting in over 20% power conversion efficiency. Deep understanding of the working principle is now required to turn the high efficiency solar cells into a reliable technology. In this work we have explored the role of deposition method on the crystallinity of perovskite films and its influence on the hysteresis behavior of the current-voltage characteristics. In addition Nb2O5 was used as hole blocking layer and its influence is also discussed. We have found that hysteresis is strongly dependent on both; perovskite deposition method and Nb2O5 thickness. The ideal condition where the hysteresis is suppressed or minimized was achieved by using the sequential deposition method for the perovskite semiconductor and a hole blocking layer of 50 nm.\",\"PeriodicalId\":140444,\"journal\":{\"name\":\"Optics + Photonics for Sustainable Energy\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics + Photonics for Sustainable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2236855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics + Photonics for Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2236855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hysteresis dependence on CH3NH3PbI3 deposition method in perovskite solar cells
CH3NH3PbI3 perovskite solar cells are one of the most exciting technologies in the renewable energy field, resulting in over 20% power conversion efficiency. Deep understanding of the working principle is now required to turn the high efficiency solar cells into a reliable technology. In this work we have explored the role of deposition method on the crystallinity of perovskite films and its influence on the hysteresis behavior of the current-voltage characteristics. In addition Nb2O5 was used as hole blocking layer and its influence is also discussed. We have found that hysteresis is strongly dependent on both; perovskite deposition method and Nb2O5 thickness. The ideal condition where the hysteresis is suppressed or minimized was achieved by using the sequential deposition method for the perovskite semiconductor and a hole blocking layer of 50 nm.