Li Zhang, Qiuyu Wang, Huilin Chen, Jinhui Bao, Jingao Xu, Danyang Li
{"title":"ARD:使用单个可穿戴惯性传感器进行准确可靠的跌倒检测","authors":"Li Zhang, Qiuyu Wang, Huilin Chen, Jinhui Bao, Jingao Xu, Danyang Li","doi":"10.1145/3556551.3561189","DOIUrl":null,"url":null,"abstract":"Accidental fall is one of the major factors threatening the health of the elderly, which promotes the considerable development of fall detection technology. In our study, a novel method is proposed to detect falls prior to impact during walking. In terms of data collection, acceleration and angular velocity data are collected using a single sensor. By extracting distinctive features, our design goal is to accurately identify fall behavior at an early stage. To improve detection accuracy and reduce false alarms, a classifier based on the joint feature of accelerations and Euler angles (JFAE) analysis is developed. With the support vector machine (SVM) classifier, human activities are classified into eight categories: going upstairs, going downstairs, running, walking, falling forward, falling backward, falling left, and falling right. Not only can it achieve a sensitivity of 96.8% and precision of 96.75%, but also the method we proposed can achieve a high accuracy for the classifier. Compared with the method based on single feature, the method based on multiple features achieves a better performance. The preliminary results indicate that our study has potential application in a fall injury prevention system.","PeriodicalId":202226,"journal":{"name":"Proceedings of the 1st ACM Workshop on Mobile and Wireless Sensing for Smart Healthcare","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ARD: accurate and reliable fall detection with using a single wearable inertial sensor\",\"authors\":\"Li Zhang, Qiuyu Wang, Huilin Chen, Jinhui Bao, Jingao Xu, Danyang Li\",\"doi\":\"10.1145/3556551.3561189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accidental fall is one of the major factors threatening the health of the elderly, which promotes the considerable development of fall detection technology. In our study, a novel method is proposed to detect falls prior to impact during walking. In terms of data collection, acceleration and angular velocity data are collected using a single sensor. By extracting distinctive features, our design goal is to accurately identify fall behavior at an early stage. To improve detection accuracy and reduce false alarms, a classifier based on the joint feature of accelerations and Euler angles (JFAE) analysis is developed. With the support vector machine (SVM) classifier, human activities are classified into eight categories: going upstairs, going downstairs, running, walking, falling forward, falling backward, falling left, and falling right. Not only can it achieve a sensitivity of 96.8% and precision of 96.75%, but also the method we proposed can achieve a high accuracy for the classifier. Compared with the method based on single feature, the method based on multiple features achieves a better performance. The preliminary results indicate that our study has potential application in a fall injury prevention system.\",\"PeriodicalId\":202226,\"journal\":{\"name\":\"Proceedings of the 1st ACM Workshop on Mobile and Wireless Sensing for Smart Healthcare\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st ACM Workshop on Mobile and Wireless Sensing for Smart Healthcare\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3556551.3561189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st ACM Workshop on Mobile and Wireless Sensing for Smart Healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3556551.3561189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ARD: accurate and reliable fall detection with using a single wearable inertial sensor
Accidental fall is one of the major factors threatening the health of the elderly, which promotes the considerable development of fall detection technology. In our study, a novel method is proposed to detect falls prior to impact during walking. In terms of data collection, acceleration and angular velocity data are collected using a single sensor. By extracting distinctive features, our design goal is to accurately identify fall behavior at an early stage. To improve detection accuracy and reduce false alarms, a classifier based on the joint feature of accelerations and Euler angles (JFAE) analysis is developed. With the support vector machine (SVM) classifier, human activities are classified into eight categories: going upstairs, going downstairs, running, walking, falling forward, falling backward, falling left, and falling right. Not only can it achieve a sensitivity of 96.8% and precision of 96.75%, but also the method we proposed can achieve a high accuracy for the classifier. Compared with the method based on single feature, the method based on multiple features achieves a better performance. The preliminary results indicate that our study has potential application in a fall injury prevention system.