比较不同聚类技术- rbf网络训练

M. M. Brizzotti, A. Carvalho
{"title":"比较不同聚类技术- rbf网络训练","authors":"M. M. Brizzotti, A. Carvalho","doi":"10.1109/SBRN.2000.889743","DOIUrl":null,"url":null,"abstract":"Clustering techniques have a strong influence on the performance achieved by RBF neural networks. The article compares the performance achieved by RBF networks using seven different clustering techniques. For such, different sizes of RBF networks are trained and tested using an automatic target recognition data set. The performances of these RBF networks using each clustering technique are compared and analyzed.","PeriodicalId":448461,"journal":{"name":"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Comparing different clustering techniques-RBF networks training\",\"authors\":\"M. M. Brizzotti, A. Carvalho\",\"doi\":\"10.1109/SBRN.2000.889743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering techniques have a strong influence on the performance achieved by RBF neural networks. The article compares the performance achieved by RBF networks using seven different clustering techniques. For such, different sizes of RBF networks are trained and tested using an automatic target recognition data set. The performances of these RBF networks using each clustering technique are compared and analyzed.\",\"PeriodicalId\":448461,\"journal\":{\"name\":\"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBRN.2000.889743\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBRN.2000.889743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

聚类技术对RBF神经网络的性能有很大的影响。本文比较了使用七种不同聚类技术的RBF网络所获得的性能。为此,使用自动目标识别数据集对不同大小的RBF网络进行训练和测试。对采用各种聚类技术的RBF网络性能进行了比较和分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparing different clustering techniques-RBF networks training
Clustering techniques have a strong influence on the performance achieved by RBF neural networks. The article compares the performance achieved by RBF networks using seven different clustering techniques. For such, different sizes of RBF networks are trained and tested using an automatic target recognition data set. The performances of these RBF networks using each clustering technique are compared and analyzed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信