一类无限维系统的有理小波分解与有限维逼近

Y. C. Pati, P. Krishnaprasad
{"title":"一类无限维系统的有理小波分解与有限维逼近","authors":"Y. C. Pati, P. Krishnaprasad","doi":"10.1109/TFTSA.1992.274204","DOIUrl":null,"url":null,"abstract":"Frame decompositions of the Hardy space H/sup 2/( Pi /sup +/) are investigated as a means of constructing rational approximations to a class of nonrational transfer functions. The frames of interest are generated via dilations and translations of a single real-rational analyzing wavelet. The compactness of the time-frequency localized representation is exploited in constructing low-order rational approximants.<<ETX>>","PeriodicalId":105228,"journal":{"name":"[1992] Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational wavelet decompositions and finite-dimensional approximations of a class of infinite-dimensional systems\",\"authors\":\"Y. C. Pati, P. Krishnaprasad\",\"doi\":\"10.1109/TFTSA.1992.274204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Frame decompositions of the Hardy space H/sup 2/( Pi /sup +/) are investigated as a means of constructing rational approximations to a class of nonrational transfer functions. The frames of interest are generated via dilations and translations of a single real-rational analyzing wavelet. The compactness of the time-frequency localized representation is exploited in constructing low-order rational approximants.<<ETX>>\",\"PeriodicalId\":105228,\"journal\":{\"name\":\"[1992] Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis\",\"volume\":\"122 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1992] Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TFTSA.1992.274204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TFTSA.1992.274204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了Hardy空间H/sup 2/(Pi /sup +/)的框架分解,作为构造一类非理性传递函数的有理逼近的一种方法。感兴趣的帧是通过单个实有理分析小波的扩展和平移来生成的。在构造低阶有理近似时,利用了时频局域表示的紧性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rational wavelet decompositions and finite-dimensional approximations of a class of infinite-dimensional systems
Frame decompositions of the Hardy space H/sup 2/( Pi /sup +/) are investigated as a means of constructing rational approximations to a class of nonrational transfer functions. The frames of interest are generated via dilations and translations of a single real-rational analyzing wavelet. The compactness of the time-frequency localized representation is exploited in constructing low-order rational approximants.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信