可变形模板混合模型的在线学习算法

F. Maire, S. Lefebvre, R. Douc, É. Moulines
{"title":"可变形模板混合模型的在线学习算法","authors":"F. Maire, S. Lefebvre, R. Douc, É. Moulines","doi":"10.1109/MLSP.2012.6349725","DOIUrl":null,"url":null,"abstract":"The issue addressed in this paper is the unsupervised learning of observed shapes. More precisely, we are aiming at learning the main features of an object seen in different scenarios. We adapt the statistical framework from [1] to propose a model in which an object is described by independent classes representing its variability. Our work consists in proposing an algorithm which learns each class characteristics in a sequential way: each new observation will improve our object knowledge. This algorithm is particularly well suited to real time applications such as shape recognition or classification, but turns out to be a challenging problem. Indeed, the so-called classic machine learning algorithms in missing data problems such as the Expectation Maximization algorithm (EM) are not designed to learn from sequentially acquired observations. Moreover, the so-called hidden data simulation in a mixture model can not be achieved in a proper way using the classic Markov Chain Monte Carlo (MCMC) algorithms, such as the Gibbs sampler. Our proposal, among other, takes advantage from the contribution of Cappé and Moulines [2] for a sequential adaptation of the EM algorithm and from the work of Carlin and Chib [3] for the hidden data posterior distribution simulation.","PeriodicalId":262601,"journal":{"name":"2012 IEEE International Workshop on Machine Learning for Signal Processing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An online learning algorithm for mixture models of deformable templates\",\"authors\":\"F. Maire, S. Lefebvre, R. Douc, É. Moulines\",\"doi\":\"10.1109/MLSP.2012.6349725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The issue addressed in this paper is the unsupervised learning of observed shapes. More precisely, we are aiming at learning the main features of an object seen in different scenarios. We adapt the statistical framework from [1] to propose a model in which an object is described by independent classes representing its variability. Our work consists in proposing an algorithm which learns each class characteristics in a sequential way: each new observation will improve our object knowledge. This algorithm is particularly well suited to real time applications such as shape recognition or classification, but turns out to be a challenging problem. Indeed, the so-called classic machine learning algorithms in missing data problems such as the Expectation Maximization algorithm (EM) are not designed to learn from sequentially acquired observations. Moreover, the so-called hidden data simulation in a mixture model can not be achieved in a proper way using the classic Markov Chain Monte Carlo (MCMC) algorithms, such as the Gibbs sampler. Our proposal, among other, takes advantage from the contribution of Cappé and Moulines [2] for a sequential adaptation of the EM algorithm and from the work of Carlin and Chib [3] for the hidden data posterior distribution simulation.\",\"PeriodicalId\":262601,\"journal\":{\"name\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2012.6349725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2012.6349725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文解决的问题是观察形状的无监督学习。更准确地说,我们的目标是学习在不同场景下看到的物体的主要特征。我们采用了[1]中的统计框架,提出了一个模型,其中一个对象由代表其可变性的独立类来描述。我们的工作包括提出一种算法,该算法以顺序的方式学习每个类的特征:每次新的观察都会提高我们对对象的认识。该算法特别适合于实时应用,如形状识别或分类,但事实证明这是一个具有挑战性的问题。事实上,在缺失数据问题中所谓的经典机器学习算法,如期望最大化算法(EM),并不是为了从顺序获得的观察中学习而设计的。此外,使用经典的马尔可夫链蒙特卡罗(MCMC)算法,如Gibbs采样器,不能很好地实现混合模型中所谓的隐藏数据模拟。其中,我们的建议利用了capp和Moulines[2]对EM算法的顺序自适应的贡献,以及Carlin和Chib[3]对隐藏数据后验分布模拟的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An online learning algorithm for mixture models of deformable templates
The issue addressed in this paper is the unsupervised learning of observed shapes. More precisely, we are aiming at learning the main features of an object seen in different scenarios. We adapt the statistical framework from [1] to propose a model in which an object is described by independent classes representing its variability. Our work consists in proposing an algorithm which learns each class characteristics in a sequential way: each new observation will improve our object knowledge. This algorithm is particularly well suited to real time applications such as shape recognition or classification, but turns out to be a challenging problem. Indeed, the so-called classic machine learning algorithms in missing data problems such as the Expectation Maximization algorithm (EM) are not designed to learn from sequentially acquired observations. Moreover, the so-called hidden data simulation in a mixture model can not be achieved in a proper way using the classic Markov Chain Monte Carlo (MCMC) algorithms, such as the Gibbs sampler. Our proposal, among other, takes advantage from the contribution of Cappé and Moulines [2] for a sequential adaptation of the EM algorithm and from the work of Carlin and Chib [3] for the hidden data posterior distribution simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信