{"title":"对倍数求平均值时,算术平均值不如调和平均值","authors":"Gilbert E. Matthews","doi":"10.5791/21-00002","DOIUrl":null,"url":null,"abstract":"This article posits that using the arithmetic mean to average multiples is mathematically inferior. A multiple is an inverted ratio with price in the numerator. The harmonic mean is a statistically sound method for averaging inverted ratios. It should be used as a measure of central tendency for multiples, along with the median. Empirically, the harmonic mean and the median of a set of multiples are usually similar. Because the harmonic mean can be overly affected by abnormally low multiples, the valuator must use judgment to exclude outliers.","PeriodicalId":138737,"journal":{"name":"Business Valuation Review","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"When Averaging Multiples, the Arithmetic Mean Is Inferior to the Harmonic Mean\",\"authors\":\"Gilbert E. Matthews\",\"doi\":\"10.5791/21-00002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article posits that using the arithmetic mean to average multiples is mathematically inferior. A multiple is an inverted ratio with price in the numerator. The harmonic mean is a statistically sound method for averaging inverted ratios. It should be used as a measure of central tendency for multiples, along with the median. Empirically, the harmonic mean and the median of a set of multiples are usually similar. Because the harmonic mean can be overly affected by abnormally low multiples, the valuator must use judgment to exclude outliers.\",\"PeriodicalId\":138737,\"journal\":{\"name\":\"Business Valuation Review\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Business Valuation Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5791/21-00002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Business Valuation Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5791/21-00002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
When Averaging Multiples, the Arithmetic Mean Is Inferior to the Harmonic Mean
This article posits that using the arithmetic mean to average multiples is mathematically inferior. A multiple is an inverted ratio with price in the numerator. The harmonic mean is a statistically sound method for averaging inverted ratios. It should be used as a measure of central tendency for multiples, along with the median. Empirically, the harmonic mean and the median of a set of multiples are usually similar. Because the harmonic mean can be overly affected by abnormally low multiples, the valuator must use judgment to exclude outliers.