优雅的可降解管道网络

R. Cypher, Ambrose Kofi Laing
{"title":"优雅的可降解管道网络","authors":"R. Cypher, Ambrose Kofi Laing","doi":"10.1109/IPPS.1997.580847","DOIUrl":null,"url":null,"abstract":"A pipeline is a linear array of processors with an input node at one end and an output node at the other end. This paper presents k-gracefully-degradable graphs which, given any set of up to k faults, contain a pipeline that uses all the healthy processor nodes. Our constructions are designed to tolerate faulty input and output nodes, but they can be adapted to provide solutions when the input and output nodes are guaranteed to be healthy. All of our constructions are optimal in terms of the number of nodes and the maximum degree of the processor nodes.","PeriodicalId":145892,"journal":{"name":"Proceedings 11th International Parallel Processing Symposium","volume":"61 19","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gracefully degradable pipeline networks\",\"authors\":\"R. Cypher, Ambrose Kofi Laing\",\"doi\":\"10.1109/IPPS.1997.580847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A pipeline is a linear array of processors with an input node at one end and an output node at the other end. This paper presents k-gracefully-degradable graphs which, given any set of up to k faults, contain a pipeline that uses all the healthy processor nodes. Our constructions are designed to tolerate faulty input and output nodes, but they can be adapted to provide solutions when the input and output nodes are guaranteed to be healthy. All of our constructions are optimal in terms of the number of nodes and the maximum degree of the processor nodes.\",\"PeriodicalId\":145892,\"journal\":{\"name\":\"Proceedings 11th International Parallel Processing Symposium\",\"volume\":\"61 19\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 11th International Parallel Processing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPPS.1997.580847\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th International Parallel Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPPS.1997.580847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

流水线是处理器的线性阵列,一端有输入节点,另一端有输出节点。本文提出了k-优雅可降解图,给定任意一组最多k个故障,其中包含一个使用所有健康处理器节点的管道。我们的结构被设计为可以容忍错误的输入和输出节点,但是当输入和输出节点保证健康时,它们可以被调整为提供解决方案。就节点数量和处理器节点的最大程度而言,我们所有的结构都是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gracefully degradable pipeline networks
A pipeline is a linear array of processors with an input node at one end and an output node at the other end. This paper presents k-gracefully-degradable graphs which, given any set of up to k faults, contain a pipeline that uses all the healthy processor nodes. Our constructions are designed to tolerate faulty input and output nodes, but they can be adapted to provide solutions when the input and output nodes are guaranteed to be healthy. All of our constructions are optimal in terms of the number of nodes and the maximum degree of the processor nodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信