{"title":"石墨烯中电荷输运的综合流体动力学模型","authors":"G. Mascali, V. Romano","doi":"10.1109/IWCE.2014.6865866","DOIUrl":null,"url":null,"abstract":"In this paper we present a hydrodynamical model for the charge and the heat transport in graphene. The macroscopic variables are moments of the electron, hole and phonon distribution functions, and their evolution equations are derived from the Boltzmann equations by integration. The system of equations is closed by means of the maximum entropy principle and all the main scattering mechanisms are taken into account. Numerical simulations are presented in the case of a suspended graphene monolayer.","PeriodicalId":168149,"journal":{"name":"2014 International Workshop on Computational Electronics (IWCE)","volume":"17 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A comprehensive hydrodynamical model for charge transport in graphene\",\"authors\":\"G. Mascali, V. Romano\",\"doi\":\"10.1109/IWCE.2014.6865866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a hydrodynamical model for the charge and the heat transport in graphene. The macroscopic variables are moments of the electron, hole and phonon distribution functions, and their evolution equations are derived from the Boltzmann equations by integration. The system of equations is closed by means of the maximum entropy principle and all the main scattering mechanisms are taken into account. Numerical simulations are presented in the case of a suspended graphene monolayer.\",\"PeriodicalId\":168149,\"journal\":{\"name\":\"2014 International Workshop on Computational Electronics (IWCE)\",\"volume\":\"17 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Workshop on Computational Electronics (IWCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCE.2014.6865866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Workshop on Computational Electronics (IWCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCE.2014.6865866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A comprehensive hydrodynamical model for charge transport in graphene
In this paper we present a hydrodynamical model for the charge and the heat transport in graphene. The macroscopic variables are moments of the electron, hole and phonon distribution functions, and their evolution equations are derived from the Boltzmann equations by integration. The system of equations is closed by means of the maximum entropy principle and all the main scattering mechanisms are taken into account. Numerical simulations are presented in the case of a suspended graphene monolayer.