{"title":"拟共形映射的保持空间","authors":"L. Kovalev","doi":"10.2298/PIM0475087K","DOIUrl":null,"url":null,"abstract":"We prove that a K-quasiconformal mapping belongs to the little Holder space C0,1/K if and only if its local modulus of continuity has an appropriate order of vanishing at every point. No such characterization is possible for Holder spaces with exponent greater than 1/K.","PeriodicalId":416273,"journal":{"name":"Publications De L'institut Mathematique","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Holder spaces of quasiconformal mappings\",\"authors\":\"L. Kovalev\",\"doi\":\"10.2298/PIM0475087K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that a K-quasiconformal mapping belongs to the little Holder space C0,1/K if and only if its local modulus of continuity has an appropriate order of vanishing at every point. No such characterization is possible for Holder spaces with exponent greater than 1/K.\",\"PeriodicalId\":416273,\"journal\":{\"name\":\"Publications De L'institut Mathematique\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications De L'institut Mathematique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/PIM0475087K\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications De L'institut Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/PIM0475087K","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We prove that a K-quasiconformal mapping belongs to the little Holder space C0,1/K if and only if its local modulus of continuity has an appropriate order of vanishing at every point. No such characterization is possible for Holder spaces with exponent greater than 1/K.