{"title":"基于最大似然(ML)的分布式系统量化器设计","authors":"Y. Kim","doi":"10.6109/jicce.2015.13.3.152","DOIUrl":null,"url":null,"abstract":"We consider the problem of designing independently operating local quantizers at nodes in distributed estimation systems, where many spatially distributed sensor nodes measure a parameter of interest, quantize these measurements, and send the quantized data to a fusion node, which conducts the parameter estimation. Motivated by the discussion that the estimation accuracy can be improved by using the quantized data with a high probability of occurrence, we propose an iterative algorithm with a simple design rule that produces quantizers by searching boundary values with an increased likelihood. We prove that this design rule generates a considerably reduced interval for finding the next boundary values, yielding a low design complexity. We demonstrate through extensive simulations that the proposed algorithm achieves a significant performance gain with respect to traditional quantizer designs. A comparison with the recently published novel algorithms further illustrates the benefit of the proposed technique in terms of performance and design complexity.","PeriodicalId":272551,"journal":{"name":"J. Inform. and Commun. Convergence Engineering","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Maximum Likelihood (ML)-Based Quantizer Design for Distributed Systems\",\"authors\":\"Y. Kim\",\"doi\":\"10.6109/jicce.2015.13.3.152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of designing independently operating local quantizers at nodes in distributed estimation systems, where many spatially distributed sensor nodes measure a parameter of interest, quantize these measurements, and send the quantized data to a fusion node, which conducts the parameter estimation. Motivated by the discussion that the estimation accuracy can be improved by using the quantized data with a high probability of occurrence, we propose an iterative algorithm with a simple design rule that produces quantizers by searching boundary values with an increased likelihood. We prove that this design rule generates a considerably reduced interval for finding the next boundary values, yielding a low design complexity. We demonstrate through extensive simulations that the proposed algorithm achieves a significant performance gain with respect to traditional quantizer designs. A comparison with the recently published novel algorithms further illustrates the benefit of the proposed technique in terms of performance and design complexity.\",\"PeriodicalId\":272551,\"journal\":{\"name\":\"J. Inform. and Commun. Convergence Engineering\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Inform. and Commun. Convergence Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6109/jicce.2015.13.3.152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Inform. and Commun. Convergence Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6109/jicce.2015.13.3.152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Maximum Likelihood (ML)-Based Quantizer Design for Distributed Systems
We consider the problem of designing independently operating local quantizers at nodes in distributed estimation systems, where many spatially distributed sensor nodes measure a parameter of interest, quantize these measurements, and send the quantized data to a fusion node, which conducts the parameter estimation. Motivated by the discussion that the estimation accuracy can be improved by using the quantized data with a high probability of occurrence, we propose an iterative algorithm with a simple design rule that produces quantizers by searching boundary values with an increased likelihood. We prove that this design rule generates a considerably reduced interval for finding the next boundary values, yielding a low design complexity. We demonstrate through extensive simulations that the proposed algorithm achieves a significant performance gain with respect to traditional quantizer designs. A comparison with the recently published novel algorithms further illustrates the benefit of the proposed technique in terms of performance and design complexity.