基于最大泄漏的学习与自适应数据分析

A. Esposito, M. Gastpar, Ibrahim Issa
{"title":"基于最大泄漏的学习与自适应数据分析","authors":"A. Esposito, M. Gastpar, Ibrahim Issa","doi":"10.1109/ITW44776.2019.8989057","DOIUrl":null,"url":null,"abstract":"There has been growing interest in studying connections between generalization error of learning algorithms and information measures. In this work, we generalize a result that employs the maximal leakage, a measure of leakage of information, and explore how this bound can be applied in different scenarios. The main application can be found in bounding the generalization error. Rather than analyzing the expected error, we provide a concentration inequality. In this work, we do not require the assumption of $\\sigma $-sub gaussianity and show how our results can be used to retrieve a generalization of the classical bounds in adaptive scenarios (e.g., McDiarmid’s inequality for c–sensitive functions, false discovery error control via significance level, etc.","PeriodicalId":214379,"journal":{"name":"2019 IEEE Information Theory Workshop (ITW)","volume":"352 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Learning and Adaptive Data Analysis via Maximal Leakage\",\"authors\":\"A. Esposito, M. Gastpar, Ibrahim Issa\",\"doi\":\"10.1109/ITW44776.2019.8989057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There has been growing interest in studying connections between generalization error of learning algorithms and information measures. In this work, we generalize a result that employs the maximal leakage, a measure of leakage of information, and explore how this bound can be applied in different scenarios. The main application can be found in bounding the generalization error. Rather than analyzing the expected error, we provide a concentration inequality. In this work, we do not require the assumption of $\\\\sigma $-sub gaussianity and show how our results can be used to retrieve a generalization of the classical bounds in adaptive scenarios (e.g., McDiarmid’s inequality for c–sensitive functions, false discovery error control via significance level, etc.\",\"PeriodicalId\":214379,\"journal\":{\"name\":\"2019 IEEE Information Theory Workshop (ITW)\",\"volume\":\"352 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW44776.2019.8989057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW44776.2019.8989057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

学习算法的泛化误差与信息测度之间的关系的研究日益引起人们的兴趣。在这项工作中,我们推广了一个使用最大泄漏的结果,这是一种信息泄漏的度量,并探索了如何将该界应用于不同的场景。它的主要应用是限定泛化误差。而不是分析预期误差,我们提供了一个集中不等式。在这项工作中,我们不需要$\sigma $-sub高斯性的假设,并展示了我们的结果如何用于自适应场景中检索经典边界的概化(例如,c敏感函数的McDiarmid不等式,通过显著性水平进行错误发现错误控制等)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning and Adaptive Data Analysis via Maximal Leakage
There has been growing interest in studying connections between generalization error of learning algorithms and information measures. In this work, we generalize a result that employs the maximal leakage, a measure of leakage of information, and explore how this bound can be applied in different scenarios. The main application can be found in bounding the generalization error. Rather than analyzing the expected error, we provide a concentration inequality. In this work, we do not require the assumption of $\sigma $-sub gaussianity and show how our results can be used to retrieve a generalization of the classical bounds in adaptive scenarios (e.g., McDiarmid’s inequality for c–sensitive functions, false discovery error control via significance level, etc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信