一种具有内存限制的卷积神经结构生成新方法

Gábor Kertész, S. Szénási, Z. Vámossy
{"title":"一种具有内存限制的卷积神经结构生成新方法","authors":"Gábor Kertész, S. Szénási, Z. Vámossy","doi":"10.1109/SAMI.2019.8782734","DOIUrl":null,"url":null,"abstract":"A novel algorithm-based method for Neural Architecture Generation is introduced in this paper. Unlike NASNet or AutoML, which outputs one optimal trained model based on a Recurrent Neural Network, the presented method outputs multiple possible architectures, without training. This method is not meant for automatic model generation based on inputs, it is designed for analyzing input preprocessing methods. The classical convolutional design patterns are analyzed and the properties and validation steps for evaluation of the generated architectures are defined, including the estimated size of the model based on the parameter numbers and training batch sizes.","PeriodicalId":240256,"journal":{"name":"2019 IEEE 17th World Symposium on Applied Machine Intelligence and Informatics (SAMI)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A novel method for Convolutional Neural Architecture Generation with memory limitation\",\"authors\":\"Gábor Kertész, S. Szénási, Z. Vámossy\",\"doi\":\"10.1109/SAMI.2019.8782734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel algorithm-based method for Neural Architecture Generation is introduced in this paper. Unlike NASNet or AutoML, which outputs one optimal trained model based on a Recurrent Neural Network, the presented method outputs multiple possible architectures, without training. This method is not meant for automatic model generation based on inputs, it is designed for analyzing input preprocessing methods. The classical convolutional design patterns are analyzed and the properties and validation steps for evaluation of the generated architectures are defined, including the estimated size of the model based on the parameter numbers and training batch sizes.\",\"PeriodicalId\":240256,\"journal\":{\"name\":\"2019 IEEE 17th World Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 17th World Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMI.2019.8782734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 17th World Symposium on Applied Machine Intelligence and Informatics (SAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMI.2019.8782734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

介绍了一种新的基于算法的神经结构生成方法。与基于循环神经网络输出一个最优训练模型的NASNet或AutoML不同,该方法无需训练即可输出多个可能的架构。该方法不是用于基于输入的自动模型生成,而是用于分析输入预处理方法。分析了经典的卷积设计模式,定义了生成的体系结构的性质和评估的验证步骤,包括基于参数数和训练批大小的模型估计大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel method for Convolutional Neural Architecture Generation with memory limitation
A novel algorithm-based method for Neural Architecture Generation is introduced in this paper. Unlike NASNet or AutoML, which outputs one optimal trained model based on a Recurrent Neural Network, the presented method outputs multiple possible architectures, without training. This method is not meant for automatic model generation based on inputs, it is designed for analyzing input preprocessing methods. The classical convolutional design patterns are analyzed and the properties and validation steps for evaluation of the generated architectures are defined, including the estimated size of the model based on the parameter numbers and training batch sizes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信