基于区间约束的数值规格突变检测

Clothilde Jeangoudoux, Eva Darulova, C. Lauter
{"title":"基于区间约束的数值规格突变检测","authors":"Clothilde Jeangoudoux, Eva Darulova, C. Lauter","doi":"10.1145/3460319.3464808","DOIUrl":null,"url":null,"abstract":"Mutation testing is an established approach for checking whether code satisfies a code-independent functional specification, and for evaluating whether a test set is adequate. Current mutation testing approaches, however, do not account for accuracy requirements that appear with numerical specifications implemented in floating- point arithmetic code, but which are a frequent part of safety-critical software. We present Magneto, an instantiation of mutation testing that fully automatically generates a test set from a real-valued specification. The generated tests check numerical code for accuracy, robustness and functional behavior bugs. Our technique is based on formulating test case and oracle generation as a constraint satisfaction problem over interval domains, which soundly bounds errors, but is nonetheless efficient. We evaluate Magneto on a standard floating-point benchmark set and find that it outperforms a random testing baseline for producing useful adequate test sets.","PeriodicalId":188008,"journal":{"name":"Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interval constraint-based mutation testing of numerical specifications\",\"authors\":\"Clothilde Jeangoudoux, Eva Darulova, C. Lauter\",\"doi\":\"10.1145/3460319.3464808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mutation testing is an established approach for checking whether code satisfies a code-independent functional specification, and for evaluating whether a test set is adequate. Current mutation testing approaches, however, do not account for accuracy requirements that appear with numerical specifications implemented in floating- point arithmetic code, but which are a frequent part of safety-critical software. We present Magneto, an instantiation of mutation testing that fully automatically generates a test set from a real-valued specification. The generated tests check numerical code for accuracy, robustness and functional behavior bugs. Our technique is based on formulating test case and oracle generation as a constraint satisfaction problem over interval domains, which soundly bounds errors, but is nonetheless efficient. We evaluate Magneto on a standard floating-point benchmark set and find that it outperforms a random testing baseline for producing useful adequate test sets.\",\"PeriodicalId\":188008,\"journal\":{\"name\":\"Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3460319.3464808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3460319.3464808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

突变测试是一种既定的方法,用于检查代码是否满足与代码无关的功能规范,以及评估测试集是否足够。然而,当前的突变测试方法并没有考虑到在浮点算术代码中实现的数值规范中出现的精度要求,但这是安全关键软件的常见部分。我们给出了Magneto,一个突变测试的实例,它完全自动地从实值规范生成测试集。生成的测试检查数字代码的准确性、健壮性和功能行为错误。我们的技术是基于将测试用例和oracle生成作为区间域上的约束满足问题,这合理地限制了错误,但仍然是有效的。我们在标准浮点基准集上评估了Magneto,并发现它在生成有用的测试集方面优于随机测试基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interval constraint-based mutation testing of numerical specifications
Mutation testing is an established approach for checking whether code satisfies a code-independent functional specification, and for evaluating whether a test set is adequate. Current mutation testing approaches, however, do not account for accuracy requirements that appear with numerical specifications implemented in floating- point arithmetic code, but which are a frequent part of safety-critical software. We present Magneto, an instantiation of mutation testing that fully automatically generates a test set from a real-valued specification. The generated tests check numerical code for accuracy, robustness and functional behavior bugs. Our technique is based on formulating test case and oracle generation as a constraint satisfaction problem over interval domains, which soundly bounds errors, but is nonetheless efficient. We evaluate Magneto on a standard floating-point benchmark set and find that it outperforms a random testing baseline for producing useful adequate test sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信