冗余基的最优去噪

M. Raphan, Eero P. Simoncelli
{"title":"冗余基的最优去噪","authors":"M. Raphan, Eero P. Simoncelli","doi":"10.1109/ICIP.2007.4379259","DOIUrl":null,"url":null,"abstract":"Image denoising methods are often based on estimators chosen to minimize mean squared error (MSE) within the sub-bands of a multi-scale decomposition. But this does not guarantee optimal MSE performance in the image domain, unless the decomposition is orthonormal. We prove that despite this suboptimality, the expected image-domain MSE resulting from a representation that is made redundant through spatial replication of basis functions (e.g., cycle-spinning) is less than or equal to that resulting from the original non-redundant representation. We also develop an extension of Stein's unbiased risk estimator (SURE) that allows minimization of the image-domain MSE for estimators that operate on subbands of a redundant decomposition. We implement an example, jointly optimizing the parameters of scalar estimators applied to each subband of an overcomplete representation, and demonstrate substantial MSE improvement over the sub-optimal application of SURE within individual subbands.","PeriodicalId":131177,"journal":{"name":"2007 IEEE International Conference on Image Processing","volume":"1119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Optimal Denoising in Redundant Bases\",\"authors\":\"M. Raphan, Eero P. Simoncelli\",\"doi\":\"10.1109/ICIP.2007.4379259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image denoising methods are often based on estimators chosen to minimize mean squared error (MSE) within the sub-bands of a multi-scale decomposition. But this does not guarantee optimal MSE performance in the image domain, unless the decomposition is orthonormal. We prove that despite this suboptimality, the expected image-domain MSE resulting from a representation that is made redundant through spatial replication of basis functions (e.g., cycle-spinning) is less than or equal to that resulting from the original non-redundant representation. We also develop an extension of Stein's unbiased risk estimator (SURE) that allows minimization of the image-domain MSE for estimators that operate on subbands of a redundant decomposition. We implement an example, jointly optimizing the parameters of scalar estimators applied to each subband of an overcomplete representation, and demonstrate substantial MSE improvement over the sub-optimal application of SURE within individual subbands.\",\"PeriodicalId\":131177,\"journal\":{\"name\":\"2007 IEEE International Conference on Image Processing\",\"volume\":\"1119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2007.4379259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2007.4379259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

图像去噪方法通常基于在多尺度分解的子带内选择最小化均方误差(MSE)的估计器。但这并不能保证在图像域的最佳MSE性能,除非分解是标准正交的。我们证明,尽管存在这种次优性,但通过基函数的空间复制(例如,循环旋转)使表示冗余的期望图像域MSE小于或等于原始非冗余表示产生的期望图像域MSE。我们还开发了Stein的无偏风险估计器(SURE)的扩展,它允许在冗余分解的子带上操作的估计器的图像域MSE最小化。我们实现了一个例子,共同优化了应用于过完备表示的每个子带的标量估计器的参数,并证明了在单个子带内应用SURE的次优MSE的显著改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Denoising in Redundant Bases
Image denoising methods are often based on estimators chosen to minimize mean squared error (MSE) within the sub-bands of a multi-scale decomposition. But this does not guarantee optimal MSE performance in the image domain, unless the decomposition is orthonormal. We prove that despite this suboptimality, the expected image-domain MSE resulting from a representation that is made redundant through spatial replication of basis functions (e.g., cycle-spinning) is less than or equal to that resulting from the original non-redundant representation. We also develop an extension of Stein's unbiased risk estimator (SURE) that allows minimization of the image-domain MSE for estimators that operate on subbands of a redundant decomposition. We implement an example, jointly optimizing the parameters of scalar estimators applied to each subband of an overcomplete representation, and demonstrate substantial MSE improvement over the sub-optimal application of SURE within individual subbands.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信