通过频率缩放和精度降低来提高FPGA加速SPICE的速度

L. Hui, Nachiket Kapre
{"title":"通过频率缩放和精度降低来提高FPGA加速SPICE的速度","authors":"L. Hui, Nachiket Kapre","doi":"10.1109/IPDPSW.2015.100","DOIUrl":null,"url":null,"abstract":"Frequency scaling and precision reduction optimization of an FPGA accelerated SPICE circuit simulator can enhance performance by 1.5x while lowering implementation cost by 15 -- 20%. This is possible due the inherent fault tolerant capabilities of SPICE that can naturally drive simulator convergence even in presence of arithmetic errors due to frequency scaling and precision reduction. We quantify the impact of these transformations on SPICE by analyzing the resulting convergence residue and runtime. To explain the impact of our optimizations, we develop an empirical error model derived from in-situ frequency scaling experiments and build analytical models of rounding and truncation errors using Gappa-based numerical analysis. Across a range of benchmark SPICE circuits, we are able to tolerate to bit-level fault rates of 10--4 (frequency scaling) and manage up to 8-bit loss in least-significant digits (precision reduction) without compromising SPICE convergence quality while delivering speedups.","PeriodicalId":340697,"journal":{"name":"2015 IEEE International Parallel and Distributed Processing Symposium Workshop","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enhancing Speedups for FPGA Accelerated SPICE through Frequency Scaling and Precision Reduction\",\"authors\":\"L. Hui, Nachiket Kapre\",\"doi\":\"10.1109/IPDPSW.2015.100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Frequency scaling and precision reduction optimization of an FPGA accelerated SPICE circuit simulator can enhance performance by 1.5x while lowering implementation cost by 15 -- 20%. This is possible due the inherent fault tolerant capabilities of SPICE that can naturally drive simulator convergence even in presence of arithmetic errors due to frequency scaling and precision reduction. We quantify the impact of these transformations on SPICE by analyzing the resulting convergence residue and runtime. To explain the impact of our optimizations, we develop an empirical error model derived from in-situ frequency scaling experiments and build analytical models of rounding and truncation errors using Gappa-based numerical analysis. Across a range of benchmark SPICE circuits, we are able to tolerate to bit-level fault rates of 10--4 (frequency scaling) and manage up to 8-bit loss in least-significant digits (precision reduction) without compromising SPICE convergence quality while delivering speedups.\",\"PeriodicalId\":340697,\"journal\":{\"name\":\"2015 IEEE International Parallel and Distributed Processing Symposium Workshop\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Parallel and Distributed Processing Symposium Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW.2015.100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Parallel and Distributed Processing Symposium Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2015.100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

FPGA加速SPICE电路模拟器的频率缩放和精度降低优化可以提高1.5倍的性能,同时降低15 - 20%的实施成本。这是可能的,因为SPICE固有的容错能力,即使在频率缩放和精度降低导致的算术错误存在的情况下,也可以自然地驱动模拟器收敛。我们通过分析结果的收敛剩余和运行时间来量化这些转换对SPICE的影响。为了解释优化的影响,我们建立了一个基于现场频率缩放实验的经验误差模型,并使用基于gappa的数值分析建立了舍入和截断误差的分析模型。在一系列基准SPICE电路中,我们能够容忍10- 4的比特级故障率(频率缩放),并在最低有效数字(精度降低)中管理高达8位的损失,而不会影响SPICE收敛质量,同时提供速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing Speedups for FPGA Accelerated SPICE through Frequency Scaling and Precision Reduction
Frequency scaling and precision reduction optimization of an FPGA accelerated SPICE circuit simulator can enhance performance by 1.5x while lowering implementation cost by 15 -- 20%. This is possible due the inherent fault tolerant capabilities of SPICE that can naturally drive simulator convergence even in presence of arithmetic errors due to frequency scaling and precision reduction. We quantify the impact of these transformations on SPICE by analyzing the resulting convergence residue and runtime. To explain the impact of our optimizations, we develop an empirical error model derived from in-situ frequency scaling experiments and build analytical models of rounding and truncation errors using Gappa-based numerical analysis. Across a range of benchmark SPICE circuits, we are able to tolerate to bit-level fault rates of 10--4 (frequency scaling) and manage up to 8-bit loss in least-significant digits (precision reduction) without compromising SPICE convergence quality while delivering speedups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信