利用倒谱分布图改进的肌电模式识别

Chih-lung Lin, W. Kang, C. Hu, S. Young, J. Lai, Maw-huei Lee, T. Kuo
{"title":"利用倒谱分布图改进的肌电模式识别","authors":"Chih-lung Lin, W. Kang, C. Hu, S. Young, J. Lai, Maw-huei Lee, T. Kuo","doi":"10.1109/IEMBS.1998.744996","DOIUrl":null,"url":null,"abstract":"In this paper, a real-time on-line plot is developed which recognizes user motion using the first and second cepstral coefficients for pattern recognition of the electromyogram (EMG). The cepstral coefficients, derived from autoregressive coefficients and estimated by a recursive least square algorithm, are used as the recognition features. The features are then discriminated using a modified maximum likelihood distance classifier. The cross distribution of the first and second cepstral coefficients can be plotted real-time and on-line. The physician or user can adjust the specific motions to attain optimal recognition results using this information. Subjects can be trained to contract muscles in specified and easily achievable patterns by the distribution plot. The recognition results can be used as myoelectric prosthetic control, or providing commands for the human-computer interface.","PeriodicalId":156581,"journal":{"name":"Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286)","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Improved EMG pattern recognition using the distribution plot of cepstrum\",\"authors\":\"Chih-lung Lin, W. Kang, C. Hu, S. Young, J. Lai, Maw-huei Lee, T. Kuo\",\"doi\":\"10.1109/IEMBS.1998.744996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a real-time on-line plot is developed which recognizes user motion using the first and second cepstral coefficients for pattern recognition of the electromyogram (EMG). The cepstral coefficients, derived from autoregressive coefficients and estimated by a recursive least square algorithm, are used as the recognition features. The features are then discriminated using a modified maximum likelihood distance classifier. The cross distribution of the first and second cepstral coefficients can be plotted real-time and on-line. The physician or user can adjust the specific motions to attain optimal recognition results using this information. Subjects can be trained to contract muscles in specified and easily achievable patterns by the distribution plot. The recognition results can be used as myoelectric prosthetic control, or providing commands for the human-computer interface.\",\"PeriodicalId\":156581,\"journal\":{\"name\":\"Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286)\",\"volume\":\"148 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMBS.1998.744996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMBS.1998.744996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文开发了一种实时在线图,利用第一倒谱系数和第二倒谱系数识别用户的运动,用于肌电图的模式识别。从自回归系数中得到的倒谱系数通过递归最小二乘算法估计,作为识别特征。然后使用改进的最大似然距离分类器来区分特征。第一倒谱系数和第二倒谱系数的交叉分布可以实时在线绘制。医生或使用者可以利用这些信息调整特定的动作以获得最佳的识别结果。通过分布图,可以训练受试者以特定的、容易实现的模式收缩肌肉。识别结果可作为肌电假肢控制,或为人机界面提供指令。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved EMG pattern recognition using the distribution plot of cepstrum
In this paper, a real-time on-line plot is developed which recognizes user motion using the first and second cepstral coefficients for pattern recognition of the electromyogram (EMG). The cepstral coefficients, derived from autoregressive coefficients and estimated by a recursive least square algorithm, are used as the recognition features. The features are then discriminated using a modified maximum likelihood distance classifier. The cross distribution of the first and second cepstral coefficients can be plotted real-time and on-line. The physician or user can adjust the specific motions to attain optimal recognition results using this information. Subjects can be trained to contract muscles in specified and easily achievable patterns by the distribution plot. The recognition results can be used as myoelectric prosthetic control, or providing commands for the human-computer interface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信