分散线性二次高斯控制问题的动态模型依赖性

K. Malakian, A. Vidmar
{"title":"分散线性二次高斯控制问题的动态模型依赖性","authors":"K. Malakian, A. Vidmar","doi":"10.1109/DASC.1990.111367","DOIUrl":null,"url":null,"abstract":"A decentralized control problem is considered with sensors, controls, and local Kalman estimators at each node for independence and redundancy. Controls using the best estimate of the system state, are sought to minimize a quadratic performance index. It is noted that cross-correction between the nodal estimates due to process noise in the dynamics model must be considered for proper fusion of the estimates. The authors demonstrate the underestimation of the control error variance from neglecting estimate cross correlation via the rendezvous problem for the linear quadratic (LQ) regulator or the fight path control problem for the LQ tracker dynamic models. When steady-state Kalman filters can be used, the calculation and information requirements are significantly reduced. The underestimation of the control error variance is shown to be nonnegligible at high gain values for these filters for each of the dynamics models considered in the rendezvous problem.<<ETX>>","PeriodicalId":141205,"journal":{"name":"9th IEEE/AIAA/NASA Conference on Digital Avionics Systems","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamic model dependency for a decentralized linear-quadratic-Gaussian control problem\",\"authors\":\"K. Malakian, A. Vidmar\",\"doi\":\"10.1109/DASC.1990.111367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A decentralized control problem is considered with sensors, controls, and local Kalman estimators at each node for independence and redundancy. Controls using the best estimate of the system state, are sought to minimize a quadratic performance index. It is noted that cross-correction between the nodal estimates due to process noise in the dynamics model must be considered for proper fusion of the estimates. The authors demonstrate the underestimation of the control error variance from neglecting estimate cross correlation via the rendezvous problem for the linear quadratic (LQ) regulator or the fight path control problem for the LQ tracker dynamic models. When steady-state Kalman filters can be used, the calculation and information requirements are significantly reduced. The underestimation of the control error variance is shown to be nonnegligible at high gain values for these filters for each of the dynamics models considered in the rendezvous problem.<<ETX>>\",\"PeriodicalId\":141205,\"journal\":{\"name\":\"9th IEEE/AIAA/NASA Conference on Digital Avionics Systems\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"9th IEEE/AIAA/NASA Conference on Digital Avionics Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DASC.1990.111367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"9th IEEE/AIAA/NASA Conference on Digital Avionics Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASC.1990.111367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用传感器、控制器和局部卡尔曼估计器在每个节点上实现独立性和冗余性,考虑了分散控制问题。控制使用系统状态的最佳估计,寻求最小化二次性能指标。需要注意的是,为了正确融合估计,必须考虑动力学模型中由于过程噪声而导致的节点估计之间的交叉校正。通过线性二次型(LQ)调节器的交会问题或LQ跟踪器动态模型的战斗路径控制问题,论证了由于忽略估计互相关而导致的控制误差方差的低估。当使用稳态卡尔曼滤波器时,大大减少了计算量和信息需求。对于交会问题中所考虑的每个动态模型,在高增益值下,这些滤波器对控制误差方差的低估是不可忽略的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic model dependency for a decentralized linear-quadratic-Gaussian control problem
A decentralized control problem is considered with sensors, controls, and local Kalman estimators at each node for independence and redundancy. Controls using the best estimate of the system state, are sought to minimize a quadratic performance index. It is noted that cross-correction between the nodal estimates due to process noise in the dynamics model must be considered for proper fusion of the estimates. The authors demonstrate the underestimation of the control error variance from neglecting estimate cross correlation via the rendezvous problem for the linear quadratic (LQ) regulator or the fight path control problem for the LQ tracker dynamic models. When steady-state Kalman filters can be used, the calculation and information requirements are significantly reduced. The underestimation of the control error variance is shown to be nonnegligible at high gain values for these filters for each of the dynamics models considered in the rendezvous problem.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信