稀疏神经网络的组合平铺

Filip Pawlowski, R. Bisseling, B. Uçar, Albert-Jan N. Yzelman
{"title":"稀疏神经网络的组合平铺","authors":"Filip Pawlowski, R. Bisseling, B. Uçar, Albert-Jan N. Yzelman","doi":"10.1109/HPEC43674.2020.9286154","DOIUrl":null,"url":null,"abstract":"Sparse deep neural networks (DNNs) emerged as the result of search for networks with less storage and lower computational complexity. The sparse DNN inference is the task of using such trained DNN networks to classify a batch of input data. We propose an efficient, hybrid model- and data-parallel DNN inference using hypergraph models and partitioners. We exploit tiling and weak synchronization to increase cache reuse, hide load imbalance, and hide synchronization costs. Finally, a blocking approach allows application of this new hybrid inference procedure for deep neural networks. We initially experiment using the hybrid tiled inference approach only, using the first five layers of networks from the IEEE HPEC 2019 Graph Challenge, and attain up to 2 x speedup versus a data-parallel baseline.","PeriodicalId":168544,"journal":{"name":"2020 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Combinatorial Tiling for Sparse Neural Networks\",\"authors\":\"Filip Pawlowski, R. Bisseling, B. Uçar, Albert-Jan N. Yzelman\",\"doi\":\"10.1109/HPEC43674.2020.9286154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparse deep neural networks (DNNs) emerged as the result of search for networks with less storage and lower computational complexity. The sparse DNN inference is the task of using such trained DNN networks to classify a batch of input data. We propose an efficient, hybrid model- and data-parallel DNN inference using hypergraph models and partitioners. We exploit tiling and weak synchronization to increase cache reuse, hide load imbalance, and hide synchronization costs. Finally, a blocking approach allows application of this new hybrid inference procedure for deep neural networks. We initially experiment using the hybrid tiled inference approach only, using the first five layers of networks from the IEEE HPEC 2019 Graph Challenge, and attain up to 2 x speedup versus a data-parallel baseline.\",\"PeriodicalId\":168544,\"journal\":{\"name\":\"2020 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC43674.2020.9286154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC43674.2020.9286154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

稀疏深度神经网络(dnn)是人们寻找存储空间更小、计算复杂度更低的网络的结果。稀疏DNN推理是利用训练好的DNN网络对一批输入数据进行分类的任务。我们提出了一个高效的,混合模型和数据并行DNN推理使用超图模型和分区。我们利用平铺和弱同步来增加缓存重用、隐藏负载不平衡和隐藏同步成本。最后,阻塞方法允许将这种新的混合推理过程应用于深度神经网络。我们最初只使用混合平铺推理方法进行实验,使用IEEE HPEC 2019图挑战中的前五层网络,与数据并行基线相比,获得了高达2倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combinatorial Tiling for Sparse Neural Networks
Sparse deep neural networks (DNNs) emerged as the result of search for networks with less storage and lower computational complexity. The sparse DNN inference is the task of using such trained DNN networks to classify a batch of input data. We propose an efficient, hybrid model- and data-parallel DNN inference using hypergraph models and partitioners. We exploit tiling and weak synchronization to increase cache reuse, hide load imbalance, and hide synchronization costs. Finally, a blocking approach allows application of this new hybrid inference procedure for deep neural networks. We initially experiment using the hybrid tiled inference approach only, using the first five layers of networks from the IEEE HPEC 2019 Graph Challenge, and attain up to 2 x speedup versus a data-parallel baseline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信