分割

Raymond A. Anderson
{"title":"分割","authors":"Raymond A. Anderson","doi":"10.1093/oso/9780192844194.003.0022","DOIUrl":null,"url":null,"abstract":"Segmentation identifies subgroups better served if treated separately, especially for risk-heterogeneous populations. Trade-offs occur between the resulting extra lift and the extra costs and complexities. It provides little where risk-homogeneity is enforced by strong filtering mechanisms. (1) Overview—i) drivers—operational, strategic, feedstock or interactional; ii) inhibitors—limits on the number of segments {insufficient data, costs of development, implementation, monitoring}; iii) mitigators—steps to reduce model count {interaction characteristics, alternative transformation and development methodologies}. (2) Analysis—i) learning types—supervised and unsupervised; ii) finding interactions—how to measure interactions for binary targets; iii) segment mining—comparing multiple options; iv) boundary analysis—assessing the impact for cases that switch segments. (3) Presentation—tabular and graphic means of presenting comparisons of different options, especially against having a single model. It includes performance within and across segments, drill-downs into segments and strategy curves showing differences in Accept and Bad rates.","PeriodicalId":286194,"journal":{"name":"Credit Intelligence & Modelling","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Segmentation\",\"authors\":\"Raymond A. Anderson\",\"doi\":\"10.1093/oso/9780192844194.003.0022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Segmentation identifies subgroups better served if treated separately, especially for risk-heterogeneous populations. Trade-offs occur between the resulting extra lift and the extra costs and complexities. It provides little where risk-homogeneity is enforced by strong filtering mechanisms. (1) Overview—i) drivers—operational, strategic, feedstock or interactional; ii) inhibitors—limits on the number of segments {insufficient data, costs of development, implementation, monitoring}; iii) mitigators—steps to reduce model count {interaction characteristics, alternative transformation and development methodologies}. (2) Analysis—i) learning types—supervised and unsupervised; ii) finding interactions—how to measure interactions for binary targets; iii) segment mining—comparing multiple options; iv) boundary analysis—assessing the impact for cases that switch segments. (3) Presentation—tabular and graphic means of presenting comparisons of different options, especially against having a single model. It includes performance within and across segments, drill-downs into segments and strategy curves showing differences in Accept and Bad rates.\",\"PeriodicalId\":286194,\"journal\":{\"name\":\"Credit Intelligence & Modelling\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Credit Intelligence & Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780192844194.003.0022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Credit Intelligence & Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780192844194.003.0022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

细分指的是单独治疗能更好地服务的亚群体,特别是对风险异质性人群。在由此产生的额外升力与额外的成本和复杂性之间进行权衡。在由强大的过滤机制强制执行风险同质性的情况下,它几乎没有什么作用。(1)概述——驱动因素——操作性、战略性、原料性或互动性;Ii)抑制因素——对分段数量的限制{数据不足、开发、实施、监测成本};Iii)缓解措施-减少模型计数的步骤{交互特征、替代转换和开发方法}。(2)分析——学习类型——监督学习和无监督学习;Ii)寻找相互作用——如何测量二元目标的相互作用;Iii)分段挖掘——比较多个选项;Iv)边界分析-评估对切换部门的情况的影响。(3)表示——用表格和图形的方式来表示不同选项的比较,特别是反对使用单一模型。它包括细分市场内部和跨细分市场的表现,细分市场的深入研究,以及显示接受率和不良率差异的策略曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Segmentation
Segmentation identifies subgroups better served if treated separately, especially for risk-heterogeneous populations. Trade-offs occur between the resulting extra lift and the extra costs and complexities. It provides little where risk-homogeneity is enforced by strong filtering mechanisms. (1) Overview—i) drivers—operational, strategic, feedstock or interactional; ii) inhibitors—limits on the number of segments {insufficient data, costs of development, implementation, monitoring}; iii) mitigators—steps to reduce model count {interaction characteristics, alternative transformation and development methodologies}. (2) Analysis—i) learning types—supervised and unsupervised; ii) finding interactions—how to measure interactions for binary targets; iii) segment mining—comparing multiple options; iv) boundary analysis—assessing the impact for cases that switch segments. (3) Presentation—tabular and graphic means of presenting comparisons of different options, especially against having a single model. It includes performance within and across segments, drill-downs into segments and strategy curves showing differences in Accept and Bad rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信