DERP:一种用于弹性资源供应的深度强化学习云系统

C. Bitsakos, I. Konstantinou, N. Koziris
{"title":"DERP:一种用于弹性资源供应的深度强化学习云系统","authors":"C. Bitsakos, I. Konstantinou, N. Koziris","doi":"10.1109/CloudCom2018.2018.00020","DOIUrl":null,"url":null,"abstract":"Modern large scale computer clusters benefit significantly from elasticity. Elasticity allows a cluster to dynamically allocate computer resources, based on the user's fluctuating workload demands. Many cloud providers use threshold-based approaches, which have been proven to be difficult to configure and optimise, while others use reinforcement learning and decision-tree approaches, which struggle when having to handle large multidimensional cluster states. In this work we use Deep Reinforcement learning techniques to achieve automatic elasticity. We use three different approaches of a Deep Reinforcement learning agent, called DERP (Deep Elastic Resource Provisioning), that takes as input the current multi-dimensional state of a cluster and manages to train and converge to the optimal elasticity behaviour after a finite amount of training steps. The system automatically decides and proceeds on requesting/releasing VM resources from the provider and orchestrating them inside a NoSQL cluster according to user-defined policies/rewards. We compare our agent to state-of-the-art, Reinforcement learning and decision-tree based, approaches in demanding simulation environments and show that it gains rewards up to 1.6 times better on its lifetime. We then test our approach in a real life cluster environment and show that the system resizes clusters in real-time and adapts its performance through a variety of demanding optimisation strategies, input and training loads.","PeriodicalId":365939,"journal":{"name":"2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"DERP: A Deep Reinforcement Learning Cloud System for Elastic Resource Provisioning\",\"authors\":\"C. Bitsakos, I. Konstantinou, N. Koziris\",\"doi\":\"10.1109/CloudCom2018.2018.00020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern large scale computer clusters benefit significantly from elasticity. Elasticity allows a cluster to dynamically allocate computer resources, based on the user's fluctuating workload demands. Many cloud providers use threshold-based approaches, which have been proven to be difficult to configure and optimise, while others use reinforcement learning and decision-tree approaches, which struggle when having to handle large multidimensional cluster states. In this work we use Deep Reinforcement learning techniques to achieve automatic elasticity. We use three different approaches of a Deep Reinforcement learning agent, called DERP (Deep Elastic Resource Provisioning), that takes as input the current multi-dimensional state of a cluster and manages to train and converge to the optimal elasticity behaviour after a finite amount of training steps. The system automatically decides and proceeds on requesting/releasing VM resources from the provider and orchestrating them inside a NoSQL cluster according to user-defined policies/rewards. We compare our agent to state-of-the-art, Reinforcement learning and decision-tree based, approaches in demanding simulation environments and show that it gains rewards up to 1.6 times better on its lifetime. We then test our approach in a real life cluster environment and show that the system resizes clusters in real-time and adapts its performance through a variety of demanding optimisation strategies, input and training loads.\",\"PeriodicalId\":365939,\"journal\":{\"name\":\"2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CloudCom2018.2018.00020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudCom2018.2018.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

现代大型计算机集群从弹性中获益良多。弹性允许集群根据用户波动的工作负载需求动态分配计算机资源。许多云提供商使用基于阈值的方法,这已被证明是难以配置和优化的,而其他云提供商使用强化学习和决策树方法,这在处理大型多维集群状态时很困难。在这项工作中,我们使用深度强化学习技术来实现自动弹性。我们使用了深度强化学习代理的三种不同方法,称为DERP(深度弹性资源供应),它将集群当前的多维状态作为输入,并在有限的训练步骤后设法训练并收敛到最佳弹性行为。系统自动决定并继续从提供者请求/释放VM资源,并根据用户定义的策略/奖励将它们编排在NoSQL集群中。我们将我们的智能体与要求苛刻的仿真环境中最先进的、基于强化学习和决策树的方法进行了比较,并表明它在其生命周期内获得的奖励高达1.6倍。然后,我们在现实生活中的集群环境中测试我们的方法,并显示系统实时调整集群大小,并通过各种苛刻的优化策略、输入和训练负载来适应其性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DERP: A Deep Reinforcement Learning Cloud System for Elastic Resource Provisioning
Modern large scale computer clusters benefit significantly from elasticity. Elasticity allows a cluster to dynamically allocate computer resources, based on the user's fluctuating workload demands. Many cloud providers use threshold-based approaches, which have been proven to be difficult to configure and optimise, while others use reinforcement learning and decision-tree approaches, which struggle when having to handle large multidimensional cluster states. In this work we use Deep Reinforcement learning techniques to achieve automatic elasticity. We use three different approaches of a Deep Reinforcement learning agent, called DERP (Deep Elastic Resource Provisioning), that takes as input the current multi-dimensional state of a cluster and manages to train and converge to the optimal elasticity behaviour after a finite amount of training steps. The system automatically decides and proceeds on requesting/releasing VM resources from the provider and orchestrating them inside a NoSQL cluster according to user-defined policies/rewards. We compare our agent to state-of-the-art, Reinforcement learning and decision-tree based, approaches in demanding simulation environments and show that it gains rewards up to 1.6 times better on its lifetime. We then test our approach in a real life cluster environment and show that the system resizes clusters in real-time and adapts its performance through a variety of demanding optimisation strategies, input and training loads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信