N. Travinin, H. Hoffmann, R. Bond, H. Chan, J. Kepner, E. Wong
{"title":"自动并行化与mapapper","authors":"N. Travinin, H. Hoffmann, R. Bond, H. Chan, J. Kepner, E. Wong","doi":"10.1109/CLUSTR.2005.347017","DOIUrl":null,"url":null,"abstract":"Algorithm implementation efficiency is key to delivering high-performance computing capabilities to demanding, high throughput signal and image processing applications and simulations. Significant progress has been made in optimization of serial programs, but many applications require parallel processing, which brings with it the difficult task of determining efficient mappings of algorithms. The pMapper infrastructure addresses the problem of performance optimization of multistage MATLABreg applications on parallel architectures. pMapper is an automatic performance tuning library written as a layer on top of pMatlab: Parallel Matlab Toolbox. While pMatlab abstracts the message-passing interface, the responsibility of mapping numerical arrays falls on the user. Choosing the best mapping for a set of numerical arrays is a nontrivial task that requires significant knowledge of programming languages, parallel computing, and processor architecture. pMapper automates the task of map generation. This abstract addresses the design details of pMapper and presents preliminary results","PeriodicalId":255312,"journal":{"name":"2005 IEEE International Conference on Cluster Computing","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Parallelization with pMapper\",\"authors\":\"N. Travinin, H. Hoffmann, R. Bond, H. Chan, J. Kepner, E. Wong\",\"doi\":\"10.1109/CLUSTR.2005.347017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Algorithm implementation efficiency is key to delivering high-performance computing capabilities to demanding, high throughput signal and image processing applications and simulations. Significant progress has been made in optimization of serial programs, but many applications require parallel processing, which brings with it the difficult task of determining efficient mappings of algorithms. The pMapper infrastructure addresses the problem of performance optimization of multistage MATLABreg applications on parallel architectures. pMapper is an automatic performance tuning library written as a layer on top of pMatlab: Parallel Matlab Toolbox. While pMatlab abstracts the message-passing interface, the responsibility of mapping numerical arrays falls on the user. Choosing the best mapping for a set of numerical arrays is a nontrivial task that requires significant knowledge of programming languages, parallel computing, and processor architecture. pMapper automates the task of map generation. This abstract addresses the design details of pMapper and presents preliminary results\",\"PeriodicalId\":255312,\"journal\":{\"name\":\"2005 IEEE International Conference on Cluster Computing\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE International Conference on Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLUSTR.2005.347017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLUSTR.2005.347017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Algorithm implementation efficiency is key to delivering high-performance computing capabilities to demanding, high throughput signal and image processing applications and simulations. Significant progress has been made in optimization of serial programs, but many applications require parallel processing, which brings with it the difficult task of determining efficient mappings of algorithms. The pMapper infrastructure addresses the problem of performance optimization of multistage MATLABreg applications on parallel architectures. pMapper is an automatic performance tuning library written as a layer on top of pMatlab: Parallel Matlab Toolbox. While pMatlab abstracts the message-passing interface, the responsibility of mapping numerical arrays falls on the user. Choosing the best mapping for a set of numerical arrays is a nontrivial task that requires significant knowledge of programming languages, parallel computing, and processor architecture. pMapper automates the task of map generation. This abstract addresses the design details of pMapper and presents preliminary results