R. Shamoyan, E. B. Tomashevskaya, Роми Ф. Шамоян, Елена В. Томашевская
{"title":"有界伪凸域上解析函数空间的新分解定理","authors":"R. Shamoyan, E. B. Tomashevskaya, Роми Ф. Шамоян, Елена В. Томашевская","doi":"10.17516/1997-1397-2020-13-4-503-514","DOIUrl":null,"url":null,"abstract":"j=1 ||fj ||Xj ≍ ||f1 . . . fm||Apα for various (Xj) spaces of analytic functions in bounded pseudoconvex domains with smooth boundary where f, fj , j = 1, . . . ,m are analytic functions and where Aα, 0 < p < ∞, α > −1 is a Bergman space. This in particular also extend in various directions a known theorem on atomic decomposition of Bergman Aα spaces.","PeriodicalId":422202,"journal":{"name":"Journal of Siberian Federal University. Mathematics and Physics","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On New Decomposition Theorems in some Analytic Function Spaces in Bounded Pseudoconvex Domains\",\"authors\":\"R. Shamoyan, E. B. Tomashevskaya, Роми Ф. Шамоян, Елена В. Томашевская\",\"doi\":\"10.17516/1997-1397-2020-13-4-503-514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"j=1 ||fj ||Xj ≍ ||f1 . . . fm||Apα for various (Xj) spaces of analytic functions in bounded pseudoconvex domains with smooth boundary where f, fj , j = 1, . . . ,m are analytic functions and where Aα, 0 < p < ∞, α > −1 is a Bergman space. This in particular also extend in various directions a known theorem on atomic decomposition of Bergman Aα spaces.\",\"PeriodicalId\":422202,\"journal\":{\"name\":\"Journal of Siberian Federal University. Mathematics and Physics\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Siberian Federal University. Mathematics and Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17516/1997-1397-2020-13-4-503-514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Siberian Federal University. Mathematics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17516/1997-1397-2020-13-4-503-514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
j=1 ||fj ||Xj ̄|f1…f, fj, j = 1,…的光滑有界伪凸域上解析函数的各种(Xj)空间的fm||Apα。,m为解析函数,其中a α, 0 < p <∞,α > - 1为Bergman空间。这也特别在各个方向上扩展了已知的Bergman a α空间的原子分解定理。
On New Decomposition Theorems in some Analytic Function Spaces in Bounded Pseudoconvex Domains
j=1 ||fj ||Xj ≍ ||f1 . . . fm||Apα for various (Xj) spaces of analytic functions in bounded pseudoconvex domains with smooth boundary where f, fj , j = 1, . . . ,m are analytic functions and where Aα, 0 < p < ∞, α > −1 is a Bergman space. This in particular also extend in various directions a known theorem on atomic decomposition of Bergman Aα spaces.