基于粗糙集和模糊c均值的鲁棒图像分割算法

Zhang Chao-quan, Liu Jian-sheng, Zou Wei-gang
{"title":"基于粗糙集和模糊c均值的鲁棒图像分割算法","authors":"Zhang Chao-quan, Liu Jian-sheng, Zou Wei-gang","doi":"10.1109/ISISE.2010.122","DOIUrl":null,"url":null,"abstract":"Image segmentation with the traditional Fuzzy C-means (FCM) algorithm only uses each pixel's gray value, when the image is corrupted by noises, the accuracy of segmentation will be greatly reduced. So, this paper proposed an image segmentation method which based on rough sets theory and fuzzy c-mean clustering. The test result shows that the method has a good segmentation performance.","PeriodicalId":206833,"journal":{"name":"2010 Third International Symposium on Information Science and Engineering","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Robust Image Segmentation Algorithm Based on Rough Sets and Fuzzy C-Means\",\"authors\":\"Zhang Chao-quan, Liu Jian-sheng, Zou Wei-gang\",\"doi\":\"10.1109/ISISE.2010.122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image segmentation with the traditional Fuzzy C-means (FCM) algorithm only uses each pixel's gray value, when the image is corrupted by noises, the accuracy of segmentation will be greatly reduced. So, this paper proposed an image segmentation method which based on rough sets theory and fuzzy c-mean clustering. The test result shows that the method has a good segmentation performance.\",\"PeriodicalId\":206833,\"journal\":{\"name\":\"2010 Third International Symposium on Information Science and Engineering\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Third International Symposium on Information Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISISE.2010.122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Third International Symposium on Information Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISISE.2010.122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

传统的模糊c均值(Fuzzy C-means, FCM)算法的图像分割只利用每个像素的灰度值,当图像被噪声破坏时,分割的精度会大大降低。为此,本文提出了一种基于粗糙集理论和模糊c均值聚类的图像分割方法。测试结果表明,该方法具有良好的分割性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Image Segmentation Algorithm Based on Rough Sets and Fuzzy C-Means
Image segmentation with the traditional Fuzzy C-means (FCM) algorithm only uses each pixel's gray value, when the image is corrupted by noises, the accuracy of segmentation will be greatly reduced. So, this paper proposed an image segmentation method which based on rough sets theory and fuzzy c-mean clustering. The test result shows that the method has a good segmentation performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信