{"title":"养护温度对混凝土强度及性能的影响","authors":"J. Cabrera, B. A. Gaafar","doi":"10.14359/6076","DOIUrl":null,"url":null,"abstract":"A computer controlled temperature matched curing system to simulate curing of concrete in structures is presented. The system has capability to accurately control the ambient temperature against the hydration temperature generated by a fully insulated concrete specimen. It is also capable of simulating any cooling rate which might occur on site and which depends on the thickness of the concrete element, the type of formwork, the ambient temperature, humidity and wind velocity. Data on normal portland cement concrete and fly ash concrete of different compositions cured at 5 deg C, 20 deg C and 35 deg C are compared with data on concrete cured using semiadiabatic conditions, and the effect of simulating the cooling-time curve is discussed in light of the results on strength, porosity and permeability.","PeriodicalId":255305,"journal":{"name":"SP-179: Fourth CANMET/ACI/JCI Conference: Advances in Concrete Technology","volume":"186 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Curing Temperature on the Strength and Performance Properties of Concrete\",\"authors\":\"J. Cabrera, B. A. Gaafar\",\"doi\":\"10.14359/6076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A computer controlled temperature matched curing system to simulate curing of concrete in structures is presented. The system has capability to accurately control the ambient temperature against the hydration temperature generated by a fully insulated concrete specimen. It is also capable of simulating any cooling rate which might occur on site and which depends on the thickness of the concrete element, the type of formwork, the ambient temperature, humidity and wind velocity. Data on normal portland cement concrete and fly ash concrete of different compositions cured at 5 deg C, 20 deg C and 35 deg C are compared with data on concrete cured using semiadiabatic conditions, and the effect of simulating the cooling-time curve is discussed in light of the results on strength, porosity and permeability.\",\"PeriodicalId\":255305,\"journal\":{\"name\":\"SP-179: Fourth CANMET/ACI/JCI Conference: Advances in Concrete Technology\",\"volume\":\"186 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SP-179: Fourth CANMET/ACI/JCI Conference: Advances in Concrete Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14359/6076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SP-179: Fourth CANMET/ACI/JCI Conference: Advances in Concrete Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14359/6076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Curing Temperature on the Strength and Performance Properties of Concrete
A computer controlled temperature matched curing system to simulate curing of concrete in structures is presented. The system has capability to accurately control the ambient temperature against the hydration temperature generated by a fully insulated concrete specimen. It is also capable of simulating any cooling rate which might occur on site and which depends on the thickness of the concrete element, the type of formwork, the ambient temperature, humidity and wind velocity. Data on normal portland cement concrete and fly ash concrete of different compositions cured at 5 deg C, 20 deg C and 35 deg C are compared with data on concrete cured using semiadiabatic conditions, and the effect of simulating the cooling-time curve is discussed in light of the results on strength, porosity and permeability.