周期变化系统的递推逆基函数辨识算法

Qadri Mayyala, Ösman Kükrer, A. Hocanin
{"title":"周期变化系统的递推逆基函数辨识算法","authors":"Qadri Mayyala, Ösman Kükrer, A. Hocanin","doi":"10.5281/ZENODO.52163","DOIUrl":null,"url":null,"abstract":"This paper presents a new algorithm for the identification (tracking) of periodically varying systems. When the system coefficients vary rapidly, conventional adaptive estimators such as the least mean squares (LMS) and the weighted least squares (WLS) algorithms become inefficient. Basis function (BF) algorithms have shown superiority over the conventional ones in tracking the parameters of periodically varying systems. Unfortunately, BF estimators are computationally very demanding. A new recursive inverse basis function estimator (RIBF) and its frequency-adaptive version are proposed which provides a significant reduction in the computational complexity and the mean square parameter estimation error without the need for any error correction code.","PeriodicalId":201182,"journal":{"name":"2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Recursive inverse basis function (RIBF) algorithm for identification of periodically varying systems\",\"authors\":\"Qadri Mayyala, Ösman Kükrer, A. Hocanin\",\"doi\":\"10.5281/ZENODO.52163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new algorithm for the identification (tracking) of periodically varying systems. When the system coefficients vary rapidly, conventional adaptive estimators such as the least mean squares (LMS) and the weighted least squares (WLS) algorithms become inefficient. Basis function (BF) algorithms have shown superiority over the conventional ones in tracking the parameters of periodically varying systems. Unfortunately, BF estimators are computationally very demanding. A new recursive inverse basis function estimator (RIBF) and its frequency-adaptive version are proposed which provides a significant reduction in the computational complexity and the mean square parameter estimation error without the need for any error correction code.\",\"PeriodicalId\":201182,\"journal\":{\"name\":\"2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.52163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.52163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种周期变化系统识别(跟踪)的新算法。当系统系数快速变化时,传统的自适应估计方法如最小均二乘(LMS)和加权最小二乘(WLS)算法变得低效。基函数(BF)算法在跟踪周期变化系统参数方面表现出了传统算法的优越性。不幸的是,BF估计器的计算要求非常高。提出了一种新的递归逆基函数估计器(RIBF)及其频率自适应版本,在不需要任何纠错码的情况下显著降低了计算复杂度和均方参数估计误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recursive inverse basis function (RIBF) algorithm for identification of periodically varying systems
This paper presents a new algorithm for the identification (tracking) of periodically varying systems. When the system coefficients vary rapidly, conventional adaptive estimators such as the least mean squares (LMS) and the weighted least squares (WLS) algorithms become inefficient. Basis function (BF) algorithms have shown superiority over the conventional ones in tracking the parameters of periodically varying systems. Unfortunately, BF estimators are computationally very demanding. A new recursive inverse basis function estimator (RIBF) and its frequency-adaptive version are proposed which provides a significant reduction in the computational complexity and the mean square parameter estimation error without the need for any error correction code.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信