故障注入活动的探索性数据分析

F. Cerveira, I. Kocsis, R. Barbosa, H. Madeira, A. Pataricza
{"title":"故障注入活动的探索性数据分析","authors":"F. Cerveira, I. Kocsis, R. Barbosa, H. Madeira, A. Pataricza","doi":"10.1109/QRS.2018.00033","DOIUrl":null,"url":null,"abstract":"Fault injection (FI) is an experimental methodology used in a wide range of scenarios for validating the fault resilience of applications, especially safety-critical ones. A sufficiently thoroughgoing evaluation produces a significant amount of data regarding the behavior of software components or entire systems in the presence of faults. The core questions that practitioners using fault injection face are 1) how to extract and represent information, 2) how to effectively analyze that data and how to utilize the gained knowledge to improve the FI process. Previous works addressing these questions relied mainly on ad hoc approaches. The current paper presents a modern view of these problems, preparing and executing the knowledge extraction by exploratory (big) data analysis, methods, and tools. A real use-case based on FI campaigns composed of thousands of fault injections into a virtualized system indicates the huge potential of the approach. The outcome is the discovery of an opportunity for a drastic speed-up of the FI process unrevealed by the traditional methodology.","PeriodicalId":114973,"journal":{"name":"2018 IEEE International Conference on Software Quality, Reliability and Security (QRS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Exploratory Data Analysis of Fault Injection Campaigns\",\"authors\":\"F. Cerveira, I. Kocsis, R. Barbosa, H. Madeira, A. Pataricza\",\"doi\":\"10.1109/QRS.2018.00033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fault injection (FI) is an experimental methodology used in a wide range of scenarios for validating the fault resilience of applications, especially safety-critical ones. A sufficiently thoroughgoing evaluation produces a significant amount of data regarding the behavior of software components or entire systems in the presence of faults. The core questions that practitioners using fault injection face are 1) how to extract and represent information, 2) how to effectively analyze that data and how to utilize the gained knowledge to improve the FI process. Previous works addressing these questions relied mainly on ad hoc approaches. The current paper presents a modern view of these problems, preparing and executing the knowledge extraction by exploratory (big) data analysis, methods, and tools. A real use-case based on FI campaigns composed of thousands of fault injections into a virtualized system indicates the huge potential of the approach. The outcome is the discovery of an opportunity for a drastic speed-up of the FI process unrevealed by the traditional methodology.\",\"PeriodicalId\":114973,\"journal\":{\"name\":\"2018 IEEE International Conference on Software Quality, Reliability and Security (QRS)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Software Quality, Reliability and Security (QRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QRS.2018.00033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Software Quality, Reliability and Security (QRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS.2018.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

故障注入(FI)是一种实验方法,广泛用于验证应用程序的故障恢复能力,特别是安全关键应用程序。充分彻底的评估会产生大量关于软件组件或存在故障的整个系统的行为的数据。从业者使用故障注入面对的核心问题是:1)如何提取和表示信息,2)如何有效地分析数据,以及如何利用获得的知识来改进故障注入过程。以前解决这些问题的工作主要依赖于特别的方法。本文提出了这些问题的现代观点,通过探索性(大)数据分析、方法和工具准备和执行知识提取。一个基于FI活动的真实用例显示了该方法的巨大潜力,该活动由数千个故障注入到虚拟系统中。其结果是发现了一个机会,可以大幅加快金融融资过程,这是传统方法所没有揭示的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploratory Data Analysis of Fault Injection Campaigns
Fault injection (FI) is an experimental methodology used in a wide range of scenarios for validating the fault resilience of applications, especially safety-critical ones. A sufficiently thoroughgoing evaluation produces a significant amount of data regarding the behavior of software components or entire systems in the presence of faults. The core questions that practitioners using fault injection face are 1) how to extract and represent information, 2) how to effectively analyze that data and how to utilize the gained knowledge to improve the FI process. Previous works addressing these questions relied mainly on ad hoc approaches. The current paper presents a modern view of these problems, preparing and executing the knowledge extraction by exploratory (big) data analysis, methods, and tools. A real use-case based on FI campaigns composed of thousands of fault injections into a virtualized system indicates the huge potential of the approach. The outcome is the discovery of an opportunity for a drastic speed-up of the FI process unrevealed by the traditional methodology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信