{"title":"从经典gnn到超级gnn检测伪装的恶意行为者","authors":"Venus Haghighi","doi":"10.1145/3539597.3572989","DOIUrl":null,"url":null,"abstract":"Graph neural networks (GNNs), which extend deep learning models to graph-structured data, have achieved great success in many applications such as detecting malicious activities. However, GNN-based models are vulnerable to camouflage behavior of malicious actors, i.e., the performance of existing GNN-based models has been hindered significantly. In this research proposal, we follow two research directions to address this challenge. One direction focuses on enhancing the existing GNN-based models and enabling them to identify both camouflaged and non-camouflaged malicious actors. In this regard, we propose to explore an adaptive aggregation strategy, which empowers GNN-based models to handle camouflage behavior of fraudsters. The other research direction concentrates on leveraging hypergraph neural networks (hyper-GNNs) to learn nodes' representation for more effective identification of camouflaged malicious actors.","PeriodicalId":227804,"journal":{"name":"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From Classic GNNs to Hyper-GNNs for Detecting Camouflaged Malicious Actors\",\"authors\":\"Venus Haghighi\",\"doi\":\"10.1145/3539597.3572989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph neural networks (GNNs), which extend deep learning models to graph-structured data, have achieved great success in many applications such as detecting malicious activities. However, GNN-based models are vulnerable to camouflage behavior of malicious actors, i.e., the performance of existing GNN-based models has been hindered significantly. In this research proposal, we follow two research directions to address this challenge. One direction focuses on enhancing the existing GNN-based models and enabling them to identify both camouflaged and non-camouflaged malicious actors. In this regard, we propose to explore an adaptive aggregation strategy, which empowers GNN-based models to handle camouflage behavior of fraudsters. The other research direction concentrates on leveraging hypergraph neural networks (hyper-GNNs) to learn nodes' representation for more effective identification of camouflaged malicious actors.\",\"PeriodicalId\":227804,\"journal\":{\"name\":\"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3539597.3572989\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3539597.3572989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
From Classic GNNs to Hyper-GNNs for Detecting Camouflaged Malicious Actors
Graph neural networks (GNNs), which extend deep learning models to graph-structured data, have achieved great success in many applications such as detecting malicious activities. However, GNN-based models are vulnerable to camouflage behavior of malicious actors, i.e., the performance of existing GNN-based models has been hindered significantly. In this research proposal, we follow two research directions to address this challenge. One direction focuses on enhancing the existing GNN-based models and enabling them to identify both camouflaged and non-camouflaged malicious actors. In this regard, we propose to explore an adaptive aggregation strategy, which empowers GNN-based models to handle camouflage behavior of fraudsters. The other research direction concentrates on leveraging hypergraph neural networks (hyper-GNNs) to learn nodes' representation for more effective identification of camouflaged malicious actors.