《国际财务报告准则第9号——预期损失:估计非评级公司违约概率的模型建议》

David Delgado-Vaquero, José Morales-Díaz, Constancio Zamora-Ramírez
{"title":"《国际财务报告准则第9号——预期损失:估计非评级公司违约概率的模型建议》","authors":"David Delgado-Vaquero, José Morales-Díaz, Constancio Zamora-Ramírez","doi":"10.2139/ssrn.3364451","DOIUrl":null,"url":null,"abstract":"Bajo el modelo de provisiones por riesgo de crédito de la NIIF 9, las empresas deben estimar una Probabilidad de Default o quiebra (PD) para todos los activos financieros (y otros elementos) no valorados a valor razonable con cambios en la cuenta de resultados. Existen varias metodologías para estimar dicha PD utilizando información histórica o de mercado. No obstante, en algunos casos las empresas no disponen de información histórica o de mercado acerca de una contraparte. Para estos casos proponemos un modelo denominado Financial Ratios Scoring (FRS), a través del cual la entidad puede obtener un rating interno de la contraparte como primer paso para estimar la PD. El modelo se diferencia de otros modelos recientes en varios aspectos como, por ejemplo, el tamaño de la base de datos o el hecho de que se enfoca en empresas sin rating. Se basa en dar una puntuación a la contraparte en función de sus ratios financieros clave. La puntuación sitúa a la empresa en un percentil dentro de una distribución del sector previamente construida utilizando empresas con rating oficial u ofrecido por vendors. Hemos analizado la fiabilidad del modelo calculando el rating interno para empresas con rating oficial y hemos comparado el rating interno con el oficial, obteniendo resultados positivos.\n Under the IFRS 9 impairment model, entities must estimate the PD (Probability of Default) for all financial assets (and other elements) not measured at fair value through profit or loss. There are several methodologies for estimating this PD from market or historical information. However, in some cases entities do not possess market or historical information concerning a counterparty. For such cases, we propose a model called Financial Ratios Scoring (FRS), by means of which an entity can obtain a “shadow rating” for a counterparty as a first step in estimating the PD. The model differentiates from other recent models in several aspects, such as the size of the database and the fact that it is focused on non-rated companies, for example. It is based on scoring the counterparty according to its key financial ratios. The score will place the counterparty on a percentile within a previously constructed sector distribution using companies with a credit rating published by rating agencies or financial vendors. We have tested the model reliability by calculating the internal credit rating of several companies (which have an official/quoted credit rating), and by comparing the rating obtained with the official one, and obtained positive results.","PeriodicalId":192282,"journal":{"name":"DecisionSciRN: Institutional Financial Decision-Making (Sub-Topic)","volume":"502 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"IFRS 9 Expected Loss: A Model Proposal for Estimating the Probability of Default for Non-Rated Companies\",\"authors\":\"David Delgado-Vaquero, José Morales-Díaz, Constancio Zamora-Ramírez\",\"doi\":\"10.2139/ssrn.3364451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bajo el modelo de provisiones por riesgo de crédito de la NIIF 9, las empresas deben estimar una Probabilidad de Default o quiebra (PD) para todos los activos financieros (y otros elementos) no valorados a valor razonable con cambios en la cuenta de resultados. Existen varias metodologías para estimar dicha PD utilizando información histórica o de mercado. No obstante, en algunos casos las empresas no disponen de información histórica o de mercado acerca de una contraparte. Para estos casos proponemos un modelo denominado Financial Ratios Scoring (FRS), a través del cual la entidad puede obtener un rating interno de la contraparte como primer paso para estimar la PD. El modelo se diferencia de otros modelos recientes en varios aspectos como, por ejemplo, el tamaño de la base de datos o el hecho de que se enfoca en empresas sin rating. Se basa en dar una puntuación a la contraparte en función de sus ratios financieros clave. La puntuación sitúa a la empresa en un percentil dentro de una distribución del sector previamente construida utilizando empresas con rating oficial u ofrecido por vendors. Hemos analizado la fiabilidad del modelo calculando el rating interno para empresas con rating oficial y hemos comparado el rating interno con el oficial, obteniendo resultados positivos.\\n Under the IFRS 9 impairment model, entities must estimate the PD (Probability of Default) for all financial assets (and other elements) not measured at fair value through profit or loss. There are several methodologies for estimating this PD from market or historical information. However, in some cases entities do not possess market or historical information concerning a counterparty. For such cases, we propose a model called Financial Ratios Scoring (FRS), by means of which an entity can obtain a “shadow rating” for a counterparty as a first step in estimating the PD. The model differentiates from other recent models in several aspects, such as the size of the database and the fact that it is focused on non-rated companies, for example. It is based on scoring the counterparty according to its key financial ratios. The score will place the counterparty on a percentile within a previously constructed sector distribution using companies with a credit rating published by rating agencies or financial vendors. We have tested the model reliability by calculating the internal credit rating of several companies (which have an official/quoted credit rating), and by comparing the rating obtained with the official one, and obtained positive results.\",\"PeriodicalId\":192282,\"journal\":{\"name\":\"DecisionSciRN: Institutional Financial Decision-Making (Sub-Topic)\",\"volume\":\"502 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DecisionSciRN: Institutional Financial Decision-Making (Sub-Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3364451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DecisionSciRN: Institutional Financial Decision-Making (Sub-Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3364451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在ifrs 9信用风险准备模型下,公司必须估计所有未按公允价值估值的金融资产(和其他项目)的违约或破产概率(PD),并对损益表进行更改。有几种方法可以利用历史或市场信息来估计PD。然而,在某些情况下,公司没有交易对手的历史或市场信息。对于这些情况,我们提出了一个称为财务比率评分(FRS)的模型,通过该模型,实体可以获得交易对手的内部评级,作为估计PD的第一步。该模型与最近的其他模型有几个不同之处,比如数据库的大小,或者它关注的是未评级的公司。它是基于对交易对手的关键财务比率进行评分。该评级将该公司置于之前使用官方评级或供应商提供的公司建立的行业分布的百分之一。我们分析了模型的可靠性,计算了官方评级公司的内部评级,并将内部评级与官方评级进行了比较,得到了积极的结果。根据IFRS 9减值模型,实体必须估计所有金融资产(和其他项目)的违约概率(PD),而不是通过利润或损失以公允价值衡量。有几种方法可以从市场或历史信息估计PD。然而,在某些情况下,实体不拥有与另一方有关的市场或历史信息。对于这种情况,我们提出了一种称为财务比率评分(FRS)的模型,即一个实体可以为另一方获得“影子评级”,作为评估PD的第一步。该模型在几个方面与最近的其他模型有所不同,例如数据库的规模以及它侧重于未评级公司的事实。它是根据对方的关键财务比率对其进行评分的。该评分将使对方在以前使用评级机构或金融供应商公布的信用评级公司进行的部门分配中处于一个百分位。我们通过计算几家公司的内部信用评级(具有官方/报价信用评级的公司),并将所获得的评级与官方评级进行比较,检验了模型的可靠性,得到了积极的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IFRS 9 Expected Loss: A Model Proposal for Estimating the Probability of Default for Non-Rated Companies
Bajo el modelo de provisiones por riesgo de crédito de la NIIF 9, las empresas deben estimar una Probabilidad de Default o quiebra (PD) para todos los activos financieros (y otros elementos) no valorados a valor razonable con cambios en la cuenta de resultados. Existen varias metodologías para estimar dicha PD utilizando información histórica o de mercado. No obstante, en algunos casos las empresas no disponen de información histórica o de mercado acerca de una contraparte. Para estos casos proponemos un modelo denominado Financial Ratios Scoring (FRS), a través del cual la entidad puede obtener un rating interno de la contraparte como primer paso para estimar la PD. El modelo se diferencia de otros modelos recientes en varios aspectos como, por ejemplo, el tamaño de la base de datos o el hecho de que se enfoca en empresas sin rating. Se basa en dar una puntuación a la contraparte en función de sus ratios financieros clave. La puntuación sitúa a la empresa en un percentil dentro de una distribución del sector previamente construida utilizando empresas con rating oficial u ofrecido por vendors. Hemos analizado la fiabilidad del modelo calculando el rating interno para empresas con rating oficial y hemos comparado el rating interno con el oficial, obteniendo resultados positivos. Under the IFRS 9 impairment model, entities must estimate the PD (Probability of Default) for all financial assets (and other elements) not measured at fair value through profit or loss. There are several methodologies for estimating this PD from market or historical information. However, in some cases entities do not possess market or historical information concerning a counterparty. For such cases, we propose a model called Financial Ratios Scoring (FRS), by means of which an entity can obtain a “shadow rating” for a counterparty as a first step in estimating the PD. The model differentiates from other recent models in several aspects, such as the size of the database and the fact that it is focused on non-rated companies, for example. It is based on scoring the counterparty according to its key financial ratios. The score will place the counterparty on a percentile within a previously constructed sector distribution using companies with a credit rating published by rating agencies or financial vendors. We have tested the model reliability by calculating the internal credit rating of several companies (which have an official/quoted credit rating), and by comparing the rating obtained with the official one, and obtained positive results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信