{"title":"可取消人脸身份验证的结构化投影融合","authors":"B. Oh, K. Toh","doi":"10.1109/IJCB.2011.6117588","DOIUrl":null,"url":null,"abstract":"This work proposes a structured random projection via feature weighting for cancelable identity verification. Essentially, projected facial features are weighted based on their discrimination capability prior to a matching process. In order to conceal the face identity, an averaging over several templates with different transformations is performed. Finally, several cancelable templates extracted from partial face images are fused at score level via a total error rate minimization. Our empirical experiments on two experimental scenarios using AR, FERET and Sheffield databases show that the proposed method consistently outperforms competing state-of-the-art un-supervised methods in terms of verification accuracy.","PeriodicalId":103913,"journal":{"name":"2011 International Joint Conference on Biometrics (IJCB)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fusion of structured projections for cancelable face identity verification\",\"authors\":\"B. Oh, K. Toh\",\"doi\":\"10.1109/IJCB.2011.6117588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes a structured random projection via feature weighting for cancelable identity verification. Essentially, projected facial features are weighted based on their discrimination capability prior to a matching process. In order to conceal the face identity, an averaging over several templates with different transformations is performed. Finally, several cancelable templates extracted from partial face images are fused at score level via a total error rate minimization. Our empirical experiments on two experimental scenarios using AR, FERET and Sheffield databases show that the proposed method consistently outperforms competing state-of-the-art un-supervised methods in terms of verification accuracy.\",\"PeriodicalId\":103913,\"journal\":{\"name\":\"2011 International Joint Conference on Biometrics (IJCB)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCB.2011.6117588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB.2011.6117588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fusion of structured projections for cancelable face identity verification
This work proposes a structured random projection via feature weighting for cancelable identity verification. Essentially, projected facial features are weighted based on their discrimination capability prior to a matching process. In order to conceal the face identity, an averaging over several templates with different transformations is performed. Finally, several cancelable templates extracted from partial face images are fused at score level via a total error rate minimization. Our empirical experiments on two experimental scenarios using AR, FERET and Sheffield databases show that the proposed method consistently outperforms competing state-of-the-art un-supervised methods in terms of verification accuracy.