现代调制波形识别及其在ABMS和VDATS测试程序集开发中的应用

S. Sobolewski, W. L. Adams, R. Sankar
{"title":"现代调制波形识别及其在ABMS和VDATS测试程序集开发中的应用","authors":"S. Sobolewski, W. L. Adams, R. Sankar","doi":"10.1109/AUTOTESTCON47462.2022.9984715","DOIUrl":null,"url":null,"abstract":"A convenient and well-performing Automatic Modulation Recognition technique for discrimination of numerous modern modulated waveforms found in commercial as well as military communication systems applicable to the new Air Force ABMS system as well as VDATS TPS development is presented. It involves generating complex feature vectors composed of high-order direct cumulant, cyclostationary and Fourier of wavelet transform features created with the help of Principal Component Analysis and variance data compression. Twelve modulated waveforms are used to evaluate the performance of the expanded feature vectors: eight commercial modulated waveforms [Quaternary Amplitude Shift Keying (QASK), Quaternary Frequency Shift Keying (QFSK), Quaternary Phase Shift Keying (QPSK), 16-Point Quadrature Amplitude Modulation (QAM-4,4), Gaussian Minimum Shift Keying (GMSK), Frequency Quadrature Amplitude Modulation (FQAM), Filter Bank Multi Carrier (FBMC) and Universal Filtered Multi Carrier (UFMC)], (Cosine) Binary Offset Carrier - BOC(1,1) - waveforms used in the European Galileo Navigation System and three waveforms utilized in defense military systems [Quaternary Linear Frequency Modulation (QLFM), Quaternary Pulse Width and Pulse Position Modulations (QPWM and QPPM)]. Generated complex feature vectors are categorized by a neural network to compare with corresponding library feature patterns.","PeriodicalId":298798,"journal":{"name":"2022 IEEE AUTOTESTCON","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Recognition of Modern Modulated Waveforms with Applications to ABMS and VDATS Test Program Set Development\",\"authors\":\"S. Sobolewski, W. L. Adams, R. Sankar\",\"doi\":\"10.1109/AUTOTESTCON47462.2022.9984715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A convenient and well-performing Automatic Modulation Recognition technique for discrimination of numerous modern modulated waveforms found in commercial as well as military communication systems applicable to the new Air Force ABMS system as well as VDATS TPS development is presented. It involves generating complex feature vectors composed of high-order direct cumulant, cyclostationary and Fourier of wavelet transform features created with the help of Principal Component Analysis and variance data compression. Twelve modulated waveforms are used to evaluate the performance of the expanded feature vectors: eight commercial modulated waveforms [Quaternary Amplitude Shift Keying (QASK), Quaternary Frequency Shift Keying (QFSK), Quaternary Phase Shift Keying (QPSK), 16-Point Quadrature Amplitude Modulation (QAM-4,4), Gaussian Minimum Shift Keying (GMSK), Frequency Quadrature Amplitude Modulation (FQAM), Filter Bank Multi Carrier (FBMC) and Universal Filtered Multi Carrier (UFMC)], (Cosine) Binary Offset Carrier - BOC(1,1) - waveforms used in the European Galileo Navigation System and three waveforms utilized in defense military systems [Quaternary Linear Frequency Modulation (QLFM), Quaternary Pulse Width and Pulse Position Modulations (QPWM and QPPM)]. Generated complex feature vectors are categorized by a neural network to compare with corresponding library feature patterns.\",\"PeriodicalId\":298798,\"journal\":{\"name\":\"2022 IEEE AUTOTESTCON\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE AUTOTESTCON\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AUTOTESTCON47462.2022.9984715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE AUTOTESTCON","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUTOTESTCON47462.2022.9984715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种方便、性能良好的自动调制识别技术,用于识别商用和军用通信系统中存在的众多现代调制波形,适用于新型空军ABMS系统和VDATS TPS开发。它涉及到在主成分分析和方差数据压缩的帮助下,生成由高阶直接累积量、循环平稳和傅立叶小波变换特征组成的复杂特征向量。使用12个调制波形来评估扩展特征向量的性能:八种商用调制波形[四元移幅键控(QASK)、四元移频键控(QFSK)、四元移相键控(QPSK)、16点正交调幅(qam -4,4)、高斯最小移键控(GMSK)、频率正交调幅(FQAM)、滤波器组多载波(FBMC)和通用滤波多载波(UFMC)],(余弦)二进制偏置载波- BOC(1,1) -欧洲伽利略导航系统中使用的波形和国防军事系统中使用的三种波形[四元线性调频(QLFM),四元脉冲宽度和脉冲位置调制(QPWM和QPPM)]。生成的复杂特征向量通过神经网络进行分类,并与相应的库特征模式进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recognition of Modern Modulated Waveforms with Applications to ABMS and VDATS Test Program Set Development
A convenient and well-performing Automatic Modulation Recognition technique for discrimination of numerous modern modulated waveforms found in commercial as well as military communication systems applicable to the new Air Force ABMS system as well as VDATS TPS development is presented. It involves generating complex feature vectors composed of high-order direct cumulant, cyclostationary and Fourier of wavelet transform features created with the help of Principal Component Analysis and variance data compression. Twelve modulated waveforms are used to evaluate the performance of the expanded feature vectors: eight commercial modulated waveforms [Quaternary Amplitude Shift Keying (QASK), Quaternary Frequency Shift Keying (QFSK), Quaternary Phase Shift Keying (QPSK), 16-Point Quadrature Amplitude Modulation (QAM-4,4), Gaussian Minimum Shift Keying (GMSK), Frequency Quadrature Amplitude Modulation (FQAM), Filter Bank Multi Carrier (FBMC) and Universal Filtered Multi Carrier (UFMC)], (Cosine) Binary Offset Carrier - BOC(1,1) - waveforms used in the European Galileo Navigation System and three waveforms utilized in defense military systems [Quaternary Linear Frequency Modulation (QLFM), Quaternary Pulse Width and Pulse Position Modulations (QPWM and QPPM)]. Generated complex feature vectors are categorized by a neural network to compare with corresponding library feature patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信