{"title":"为增强态势感知,同轴转子和导管风扇配置的TUAV双速率神经控制","authors":"I. Astrov, A. Pedai, B. Gordon","doi":"10.1109/ELEKTRO.2012.6225630","DOIUrl":null,"url":null,"abstract":"This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for tactical unmanned aerial vehicle (TUAV). With the SA strategy, we proposed a two-rate flight control procedure using two autonomous control subsystems to address the dynamics variation and performance requirement difference in initial and final stages of flight trajectory for an unmanned helicopter model with coaxial rotor and ducted fan configuration. This control strategy for chosen model of TUAV has been verified by simulation of flight maneuvers using software package Simulink and demonstrated good performance for fast stabilization of engines during flight, consequently, fast SA with economy in energy can be asserted during search-and-rescue operations.","PeriodicalId":343071,"journal":{"name":"2012 ELEKTRO","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-rate neural control of TUAV with coaxial rotor and ducted fan configuration for enhanced situational awareness\",\"authors\":\"I. Astrov, A. Pedai, B. Gordon\",\"doi\":\"10.1109/ELEKTRO.2012.6225630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for tactical unmanned aerial vehicle (TUAV). With the SA strategy, we proposed a two-rate flight control procedure using two autonomous control subsystems to address the dynamics variation and performance requirement difference in initial and final stages of flight trajectory for an unmanned helicopter model with coaxial rotor and ducted fan configuration. This control strategy for chosen model of TUAV has been verified by simulation of flight maneuvers using software package Simulink and demonstrated good performance for fast stabilization of engines during flight, consequently, fast SA with economy in energy can be asserted during search-and-rescue operations.\",\"PeriodicalId\":343071,\"journal\":{\"name\":\"2012 ELEKTRO\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 ELEKTRO\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ELEKTRO.2012.6225630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 ELEKTRO","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELEKTRO.2012.6225630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Two-rate neural control of TUAV with coaxial rotor and ducted fan configuration for enhanced situational awareness
This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for tactical unmanned aerial vehicle (TUAV). With the SA strategy, we proposed a two-rate flight control procedure using two autonomous control subsystems to address the dynamics variation and performance requirement difference in initial and final stages of flight trajectory for an unmanned helicopter model with coaxial rotor and ducted fan configuration. This control strategy for chosen model of TUAV has been verified by simulation of flight maneuvers using software package Simulink and demonstrated good performance for fast stabilization of engines during flight, consequently, fast SA with economy in energy can be asserted during search-and-rescue operations.