具有改善偏置和温度应力下漏损的铁电HfO2/ZrO2超晶格

D. Lehninger, A. Sünbül, R. Olivo, T. Kämpfe, K. Seidel, M. Lederer
{"title":"具有改善偏置和温度应力下漏损的铁电HfO2/ZrO2超晶格","authors":"D. Lehninger, A. Sünbül, R. Olivo, T. Kämpfe, K. Seidel, M. Lederer","doi":"10.1109/IMW56887.2023.10145927","DOIUrl":null,"url":null,"abstract":"Abstract-Many modern applications require fast, reliable, and energy-efficient non-volatile memories. Ferroelectric memories like the ferroelectric field effect transistor (FeFET) and the ferroelectric random access memory (FeRAM) are promising to meet these requirements. In particular, the automotive sector places additional high demands in terms of reliability at high operation temperatures up to 150°C. Ferroelectric superlattices consisting of a periodic arrangement of HfO2 and ZrO2 sublayers are promising to meet these requirements. Herein, such superlattices of various sublayer thicknesses and a constant total thickness of $10 \\mathrm{~nm}$ were embedded into metal-ferroelectricmetal (MFM) capacitors and electrically characterized regarding compliance with the desired ambient temperature specifications of the automotive market. It is shown that superlattices with relatively thick sublayers ($\\geq 1 \\mathrm{~nm}$) significantly outperform standard $10 \\mathrm{~nm}(\\mathrm{Hf}, \\mathrm{Zr}) \\mathrm{O}_{2}$ reference films in terms of leakage resistance at demanding bias and temperature stress conditions.","PeriodicalId":153429,"journal":{"name":"2023 IEEE International Memory Workshop (IMW)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ferroelectric HfO2/ZrO2 Superlattices with Improved Leakage at Bias and Temperature Stress\",\"authors\":\"D. Lehninger, A. Sünbül, R. Olivo, T. Kämpfe, K. Seidel, M. Lederer\",\"doi\":\"10.1109/IMW56887.2023.10145927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract-Many modern applications require fast, reliable, and energy-efficient non-volatile memories. Ferroelectric memories like the ferroelectric field effect transistor (FeFET) and the ferroelectric random access memory (FeRAM) are promising to meet these requirements. In particular, the automotive sector places additional high demands in terms of reliability at high operation temperatures up to 150°C. Ferroelectric superlattices consisting of a periodic arrangement of HfO2 and ZrO2 sublayers are promising to meet these requirements. Herein, such superlattices of various sublayer thicknesses and a constant total thickness of $10 \\\\mathrm{~nm}$ were embedded into metal-ferroelectricmetal (MFM) capacitors and electrically characterized regarding compliance with the desired ambient temperature specifications of the automotive market. It is shown that superlattices with relatively thick sublayers ($\\\\geq 1 \\\\mathrm{~nm}$) significantly outperform standard $10 \\\\mathrm{~nm}(\\\\mathrm{Hf}, \\\\mathrm{Zr}) \\\\mathrm{O}_{2}$ reference films in terms of leakage resistance at demanding bias and temperature stress conditions.\",\"PeriodicalId\":153429,\"journal\":{\"name\":\"2023 IEEE International Memory Workshop (IMW)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Memory Workshop (IMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMW56887.2023.10145927\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Memory Workshop (IMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMW56887.2023.10145927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

许多现代应用需要快速、可靠和节能的非易失性存储器。铁电存储器如铁电场效应晶体管(FeFET)和铁电随机存取存储器(FeRAM)有望满足这些要求。特别是,汽车行业在高达150°C的高温下对可靠性提出了额外的高要求。由HfO2和ZrO2亚层的周期性排列组成的铁电超晶格有望满足这些要求。在这里,这种具有不同亚层厚度和恒定总厚度$10 \mathrm{~nm}$的超晶格被嵌入到金属-铁电金属(MFM)电容器中,并根据汽车市场所需的环境温度规范进行电学表征。结果表明,在要求偏置和温度应力条件下,具有相对厚的子层的超晶格($\geq 1 \mathrm{~nm}$)在泄漏电阻方面明显优于标准$10 \mathrm{~nm}(\mathrm{Hf}, \mathrm{Zr}) \mathrm{O}_{2}$参考薄膜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ferroelectric HfO2/ZrO2 Superlattices with Improved Leakage at Bias and Temperature Stress
Abstract-Many modern applications require fast, reliable, and energy-efficient non-volatile memories. Ferroelectric memories like the ferroelectric field effect transistor (FeFET) and the ferroelectric random access memory (FeRAM) are promising to meet these requirements. In particular, the automotive sector places additional high demands in terms of reliability at high operation temperatures up to 150°C. Ferroelectric superlattices consisting of a periodic arrangement of HfO2 and ZrO2 sublayers are promising to meet these requirements. Herein, such superlattices of various sublayer thicknesses and a constant total thickness of $10 \mathrm{~nm}$ were embedded into metal-ferroelectricmetal (MFM) capacitors and electrically characterized regarding compliance with the desired ambient temperature specifications of the automotive market. It is shown that superlattices with relatively thick sublayers ($\geq 1 \mathrm{~nm}$) significantly outperform standard $10 \mathrm{~nm}(\mathrm{Hf}, \mathrm{Zr}) \mathrm{O}_{2}$ reference films in terms of leakage resistance at demanding bias and temperature stress conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信