基于MFCC特征的独立癫痫患者预测SPCNN模型

Siyuan Guo, Fan Zhang
{"title":"基于MFCC特征的独立癫痫患者预测SPCNN模型","authors":"Siyuan Guo, Fan Zhang","doi":"10.1109/ICIST55546.2022.9926793","DOIUrl":null,"url":null,"abstract":"Epilepsy is one of the most common psychiatric disorders in humans, and the sudden onset of seizures can seriously affect patients' lives. Predicting seizures can help prevent accidents and help physicians to intervene in treatment. Most studies on seizure prediction have chosen to customize prediction models for patients for high accuracy and sensitivity, which are difficult to adapt to the high variability between electroencephalogram (EEG) signals of different patients and cannot be applied to other patients and are difficult to use clinically. The main energy of EEG signal is concentrated in the low-frequency phase, which contains more detailed information, inspired by some methods in speech signal processing. The SPCNN, a patient-independent epilepsy prediction model, was constructed using convolutional neural networks by introducing more Mel-Frequency Cepstral Coefficients (MFCC) features concentrated in the low-frequency region, and obtained 93% accuracy, 91 % sensitivity, and 83% F1-score values in the CHB-MIT dataset.","PeriodicalId":211213,"journal":{"name":"2022 12th International Conference on Information Science and Technology (ICIST)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A SPCNN Model for Patient-Independent Prediction of Epilepsy Using MFCC Features\",\"authors\":\"Siyuan Guo, Fan Zhang\",\"doi\":\"10.1109/ICIST55546.2022.9926793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Epilepsy is one of the most common psychiatric disorders in humans, and the sudden onset of seizures can seriously affect patients' lives. Predicting seizures can help prevent accidents and help physicians to intervene in treatment. Most studies on seizure prediction have chosen to customize prediction models for patients for high accuracy and sensitivity, which are difficult to adapt to the high variability between electroencephalogram (EEG) signals of different patients and cannot be applied to other patients and are difficult to use clinically. The main energy of EEG signal is concentrated in the low-frequency phase, which contains more detailed information, inspired by some methods in speech signal processing. The SPCNN, a patient-independent epilepsy prediction model, was constructed using convolutional neural networks by introducing more Mel-Frequency Cepstral Coefficients (MFCC) features concentrated in the low-frequency region, and obtained 93% accuracy, 91 % sensitivity, and 83% F1-score values in the CHB-MIT dataset.\",\"PeriodicalId\":211213,\"journal\":{\"name\":\"2022 12th International Conference on Information Science and Technology (ICIST)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 12th International Conference on Information Science and Technology (ICIST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIST55546.2022.9926793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 12th International Conference on Information Science and Technology (ICIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST55546.2022.9926793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

癫痫是人类最常见的精神疾病之一,癫痫的突然发作会严重影响患者的生命。预测癫痫发作可以帮助预防事故,并帮助医生干预治疗。大多数癫痫发作预测研究都选择为患者定制预测模型,以获得较高的准确性和灵敏度,难以适应不同患者脑电图信号之间的高度变异性,无法应用于其他患者,难以在临床上应用。受语音信号处理方法的启发,脑电信号的主要能量集中在低频相位,低频相位包含更详细的信息。SPCNN是一种独立于患者的癫痫预测模型,该模型采用卷积神经网络,引入更多集中在低频区的Mel-Frequency Cepstral Coefficients (MFCC)特征,在CHB-MIT数据集中获得了93%的准确率、91%的灵敏度和83%的f1评分值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A SPCNN Model for Patient-Independent Prediction of Epilepsy Using MFCC Features
Epilepsy is one of the most common psychiatric disorders in humans, and the sudden onset of seizures can seriously affect patients' lives. Predicting seizures can help prevent accidents and help physicians to intervene in treatment. Most studies on seizure prediction have chosen to customize prediction models for patients for high accuracy and sensitivity, which are difficult to adapt to the high variability between electroencephalogram (EEG) signals of different patients and cannot be applied to other patients and are difficult to use clinically. The main energy of EEG signal is concentrated in the low-frequency phase, which contains more detailed information, inspired by some methods in speech signal processing. The SPCNN, a patient-independent epilepsy prediction model, was constructed using convolutional neural networks by introducing more Mel-Frequency Cepstral Coefficients (MFCC) features concentrated in the low-frequency region, and obtained 93% accuracy, 91 % sensitivity, and 83% F1-score values in the CHB-MIT dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信