融合异步特征流的在线写入器识别

A. Schlapbach, H. Bunke
{"title":"融合异步特征流的在线写入器识别","authors":"A. Schlapbach, H. Bunke","doi":"10.1109/ICDAR.2007.122","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new approach to improving the performance of a writer identification system by fusing asynchronous feature streams. Different feature streams are extracted from on-line handwritten text acquired from a whiteboard. The feature streams are used to train a text and language independent writer identification system based on Gaussian mixture models (GMMs). From a stroke consisting of n points, n point-based feature vectors and one stroke-based feature vector are extracted. The resulting feature streams thus have an unequal number of feature vectors. We evaluate different methods to directly fuse the feature streams and show that, by means of feature fusion, we can improve the performance of the writer identification system on a data set produced by 200 different writers.","PeriodicalId":279268,"journal":{"name":"Ninth International Conference on Document Analysis and Recognition (ICDAR 2007)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Fusing Asynchronous Feature Streams for On-line Writer Identification\",\"authors\":\"A. Schlapbach, H. Bunke\",\"doi\":\"10.1109/ICDAR.2007.122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a new approach to improving the performance of a writer identification system by fusing asynchronous feature streams. Different feature streams are extracted from on-line handwritten text acquired from a whiteboard. The feature streams are used to train a text and language independent writer identification system based on Gaussian mixture models (GMMs). From a stroke consisting of n points, n point-based feature vectors and one stroke-based feature vector are extracted. The resulting feature streams thus have an unequal number of feature vectors. We evaluate different methods to directly fuse the feature streams and show that, by means of feature fusion, we can improve the performance of the writer identification system on a data set produced by 200 different writers.\",\"PeriodicalId\":279268,\"journal\":{\"name\":\"Ninth International Conference on Document Analysis and Recognition (ICDAR 2007)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ninth International Conference on Document Analysis and Recognition (ICDAR 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2007.122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ninth International Conference on Document Analysis and Recognition (ICDAR 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2007.122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在本文中,我们提出了一种通过融合异步特征流来提高写入器识别系统性能的新方法。从白板上获取的在线手写文本中提取不同的特征流。利用特征流训练了基于高斯混合模型的独立于文本和语言的作家识别系统。从由n个点组成的笔画中提取n个基于点的特征向量和一个基于笔画的特征向量。由此产生的特征流具有不相等数量的特征向量。我们评估了不同的直接融合特征流的方法,并表明,通过特征融合,我们可以提高作者识别系统在由200个不同作者产生的数据集上的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fusing Asynchronous Feature Streams for On-line Writer Identification
In this paper, we present a new approach to improving the performance of a writer identification system by fusing asynchronous feature streams. Different feature streams are extracted from on-line handwritten text acquired from a whiteboard. The feature streams are used to train a text and language independent writer identification system based on Gaussian mixture models (GMMs). From a stroke consisting of n points, n point-based feature vectors and one stroke-based feature vector are extracted. The resulting feature streams thus have an unequal number of feature vectors. We evaluate different methods to directly fuse the feature streams and show that, by means of feature fusion, we can improve the performance of the writer identification system on a data set produced by 200 different writers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信