Eri Hirahara, M. Paunescu, O. Polishchuk, E. Jeong, Edward Ng, J. Shan, Jian Yin, Jihoon Kim, Yi Cao, Jin Li, Sungeun Hong, D. Baskaran, Guanyang Lin
{"title":"定向自组装材料的高分辨率超过PS-b-PMMA","authors":"Eri Hirahara, M. Paunescu, O. Polishchuk, E. Jeong, Edward Ng, J. Shan, Jian Yin, Jihoon Kim, Yi Cao, Jin Li, Sungeun Hong, D. Baskaran, Guanyang Lin","doi":"10.1117/12.2220424","DOIUrl":null,"url":null,"abstract":"To extend directed self-assembly (DSA) of poly(styrene-b-methyl methacrylate) (PS-b-PMMA) for higher resolution, placement accuracy and potentially improved pattern line edge roughness (LER), we have developed a next-generation material platform of organic high-χ block copolymers (“HC series”, AZEMBLYTM EXP PME-3000 series). The new material platform has a built-in orientation control mechanism which enables block copolymer domains to vertically selforient without topcoat/additive or delicate solvent vapor annealing. Furthermore, sub-10 nm lines and spaces (L/S) patterning by two major chemoepitaxy DSA, LiNe and SMARTTM processes, was successfully implemented on 12” wafer substrates by using the PME-3000 lamellar series. The results revealed that the new material platform is compatible with the existing PS-b-PMMA-based chemical prepatterns and standard protocols. We also introduced the built-in orientation control strategy to the conventional PS-b-PMMA system, producing a new generation of PS-b-PMMA materials with facile orientation control. The modified PS-b-PMMA (m-PS-b-PMMA) performed LiNe flow DSA yielding a comparable CD process window with improved LER/LWR/SWR after the L/S patterns were transferred into a Si substrate.","PeriodicalId":193904,"journal":{"name":"SPIE Advanced Lithography","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Directed self-assembly materials for high resolution beyond PS-b-PMMA\",\"authors\":\"Eri Hirahara, M. Paunescu, O. Polishchuk, E. Jeong, Edward Ng, J. Shan, Jian Yin, Jihoon Kim, Yi Cao, Jin Li, Sungeun Hong, D. Baskaran, Guanyang Lin\",\"doi\":\"10.1117/12.2220424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To extend directed self-assembly (DSA) of poly(styrene-b-methyl methacrylate) (PS-b-PMMA) for higher resolution, placement accuracy and potentially improved pattern line edge roughness (LER), we have developed a next-generation material platform of organic high-χ block copolymers (“HC series”, AZEMBLYTM EXP PME-3000 series). The new material platform has a built-in orientation control mechanism which enables block copolymer domains to vertically selforient without topcoat/additive or delicate solvent vapor annealing. Furthermore, sub-10 nm lines and spaces (L/S) patterning by two major chemoepitaxy DSA, LiNe and SMARTTM processes, was successfully implemented on 12” wafer substrates by using the PME-3000 lamellar series. The results revealed that the new material platform is compatible with the existing PS-b-PMMA-based chemical prepatterns and standard protocols. We also introduced the built-in orientation control strategy to the conventional PS-b-PMMA system, producing a new generation of PS-b-PMMA materials with facile orientation control. The modified PS-b-PMMA (m-PS-b-PMMA) performed LiNe flow DSA yielding a comparable CD process window with improved LER/LWR/SWR after the L/S patterns were transferred into a Si substrate.\",\"PeriodicalId\":193904,\"journal\":{\"name\":\"SPIE Advanced Lithography\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Advanced Lithography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2220424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Advanced Lithography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2220424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Directed self-assembly materials for high resolution beyond PS-b-PMMA
To extend directed self-assembly (DSA) of poly(styrene-b-methyl methacrylate) (PS-b-PMMA) for higher resolution, placement accuracy and potentially improved pattern line edge roughness (LER), we have developed a next-generation material platform of organic high-χ block copolymers (“HC series”, AZEMBLYTM EXP PME-3000 series). The new material platform has a built-in orientation control mechanism which enables block copolymer domains to vertically selforient without topcoat/additive or delicate solvent vapor annealing. Furthermore, sub-10 nm lines and spaces (L/S) patterning by two major chemoepitaxy DSA, LiNe and SMARTTM processes, was successfully implemented on 12” wafer substrates by using the PME-3000 lamellar series. The results revealed that the new material platform is compatible with the existing PS-b-PMMA-based chemical prepatterns and standard protocols. We also introduced the built-in orientation control strategy to the conventional PS-b-PMMA system, producing a new generation of PS-b-PMMA materials with facile orientation control. The modified PS-b-PMMA (m-PS-b-PMMA) performed LiNe flow DSA yielding a comparable CD process window with improved LER/LWR/SWR after the L/S patterns were transferred into a Si substrate.