基于改进多目标粒子群算法的微电网多目标优化

Yi Zeng, Hongcheng Zhao, Chuanping Liu, Silin Chen, Xinghong Hao, Xiaojiao Sun, Junjie Zhang
{"title":"基于改进多目标粒子群算法的微电网多目标优化","authors":"Yi Zeng, Hongcheng Zhao, Chuanping Liu, Silin Chen, Xinghong Hao, Xiaojiao Sun, Junjie Zhang","doi":"10.1109/scset55041.2022.00027","DOIUrl":null,"url":null,"abstract":"In this paper, a multi-objective optimization mathematical model is established based on the comprehensive consideration of economy, environment and battery circulating power in the process of microgrid dispatching. Aiming at the shortcomings of the traditional multi-objective particle swarm optimization (MOPSO), this paper proposes a multi-objective particle swarm optimization algorithm based on fuzzy clustering (FCMOPSO), which introduces fuzzy clustering analysis in the iterative process to find the optimal cluster solution of each generation. Compared with MOPSO, FCMOPSO enhances the stability and global search ability of the algorithm, and makes the Pareto front distribution more uniform in the optimization results. After obtaining the Pareto optimal solution set, according to the importance of each target, the fuzzy model identification is used to find the optimal scheme under different conditions from the optimal solution set.","PeriodicalId":446933,"journal":{"name":"2022 International Seminar on Computer Science and Engineering Technology (SCSET)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multi objective optimization of microgrid based on Improved Multi-objective Particle Swarm Optimization\",\"authors\":\"Yi Zeng, Hongcheng Zhao, Chuanping Liu, Silin Chen, Xinghong Hao, Xiaojiao Sun, Junjie Zhang\",\"doi\":\"10.1109/scset55041.2022.00027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a multi-objective optimization mathematical model is established based on the comprehensive consideration of economy, environment and battery circulating power in the process of microgrid dispatching. Aiming at the shortcomings of the traditional multi-objective particle swarm optimization (MOPSO), this paper proposes a multi-objective particle swarm optimization algorithm based on fuzzy clustering (FCMOPSO), which introduces fuzzy clustering analysis in the iterative process to find the optimal cluster solution of each generation. Compared with MOPSO, FCMOPSO enhances the stability and global search ability of the algorithm, and makes the Pareto front distribution more uniform in the optimization results. After obtaining the Pareto optimal solution set, according to the importance of each target, the fuzzy model identification is used to find the optimal scheme under different conditions from the optimal solution set.\",\"PeriodicalId\":446933,\"journal\":{\"name\":\"2022 International Seminar on Computer Science and Engineering Technology (SCSET)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Seminar on Computer Science and Engineering Technology (SCSET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/scset55041.2022.00027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Seminar on Computer Science and Engineering Technology (SCSET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/scset55041.2022.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文在综合考虑经济、环境和电池循环功率的基础上,建立了微网调度过程中的多目标优化数学模型。针对传统多目标粒子群优化算法(MOPSO)的不足,提出了一种基于模糊聚类的多目标粒子群优化算法(FCMOPSO),该算法在迭代过程中引入模糊聚类分析,寻找每一代的最优聚类解。与MOPSO相比,FCMOPSO增强了算法的稳定性和全局搜索能力,使优化结果中的Pareto front分布更加均匀。在得到Pareto最优解集后,根据各目标的重要程度,利用模糊模型辨识从最优解集中找出不同条件下的最优方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi objective optimization of microgrid based on Improved Multi-objective Particle Swarm Optimization
In this paper, a multi-objective optimization mathematical model is established based on the comprehensive consideration of economy, environment and battery circulating power in the process of microgrid dispatching. Aiming at the shortcomings of the traditional multi-objective particle swarm optimization (MOPSO), this paper proposes a multi-objective particle swarm optimization algorithm based on fuzzy clustering (FCMOPSO), which introduces fuzzy clustering analysis in the iterative process to find the optimal cluster solution of each generation. Compared with MOPSO, FCMOPSO enhances the stability and global search ability of the algorithm, and makes the Pareto front distribution more uniform in the optimization results. After obtaining the Pareto optimal solution set, according to the importance of each target, the fuzzy model identification is used to find the optimal scheme under different conditions from the optimal solution set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信