{"title":"图像中不精确信息的空间不确定性建模","authors":"T. Pham","doi":"10.1109/APSIPA.2014.7041514","DOIUrl":null,"url":null,"abstract":"The description of information content in images is imprecise in nature. Quantification of uncertainty in images for pattern analysis has been addressed with the theories of probability and fuzzy sets. In this paper, an approach for modeling the spatial uncertainty of images is proposed in the setting of geostatistics and probability measure of fuzzy events. The proposed approach can be utilized to extract an effective feature for image classification.","PeriodicalId":231382,"journal":{"name":"Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling spatial uncertainty of imprecise information in images\",\"authors\":\"T. Pham\",\"doi\":\"10.1109/APSIPA.2014.7041514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The description of information content in images is imprecise in nature. Quantification of uncertainty in images for pattern analysis has been addressed with the theories of probability and fuzzy sets. In this paper, an approach for modeling the spatial uncertainty of images is proposed in the setting of geostatistics and probability measure of fuzzy events. The proposed approach can be utilized to extract an effective feature for image classification.\",\"PeriodicalId\":231382,\"journal\":{\"name\":\"Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSIPA.2014.7041514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPA.2014.7041514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling spatial uncertainty of imprecise information in images
The description of information content in images is imprecise in nature. Quantification of uncertainty in images for pattern analysis has been addressed with the theories of probability and fuzzy sets. In this paper, an approach for modeling the spatial uncertainty of images is proposed in the setting of geostatistics and probability measure of fuzzy events. The proposed approach can be utilized to extract an effective feature for image classification.