分组循环赛

Bogdan Caprita, Jason Nieh, W. C. Chan
{"title":"分组循环赛","authors":"Bogdan Caprita, Jason Nieh, W. C. Chan","doi":"10.1145/1095890.1095896","DOIUrl":null,"url":null,"abstract":"We present group round-robin (GRR) scheduling, a hybrid fair packet scheduling framework based on a grouping strategy that narrows down the traditional trade-off between fairness and computational complexity. GRR combines its grouping strategy with a specialized round-robin scheduling algorithm that utilizes the properties of GRR groups to schedule flows within groups in a manner that provides O(1) bounds on fairness with only O(1) time complexity. Under the practical assumption that GRR employs a small constant number of groups, we apply GRR to popular fair queuing scheduling algorithms and show how GRR can be used to achieve constant bounds on fairness and time complexity for these algorithms. We also present and prove new results on the fairness bounds for several of these fair queuing algorithms using a consistent fairness measure. We analyze the behavior of GRR and present experimental results that demonstrate how GRR can be combined with existing scheduling algorithms to provide much lower scheduling overhead and more than an order of magnitude better scheduling accuracy in practice than scheduling algorithms without GRR.","PeriodicalId":417086,"journal":{"name":"2005 Symposium on Architectures for Networking and Communications Systems (ANCS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Group round robin\",\"authors\":\"Bogdan Caprita, Jason Nieh, W. C. Chan\",\"doi\":\"10.1145/1095890.1095896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present group round-robin (GRR) scheduling, a hybrid fair packet scheduling framework based on a grouping strategy that narrows down the traditional trade-off between fairness and computational complexity. GRR combines its grouping strategy with a specialized round-robin scheduling algorithm that utilizes the properties of GRR groups to schedule flows within groups in a manner that provides O(1) bounds on fairness with only O(1) time complexity. Under the practical assumption that GRR employs a small constant number of groups, we apply GRR to popular fair queuing scheduling algorithms and show how GRR can be used to achieve constant bounds on fairness and time complexity for these algorithms. We also present and prove new results on the fairness bounds for several of these fair queuing algorithms using a consistent fairness measure. We analyze the behavior of GRR and present experimental results that demonstrate how GRR can be combined with existing scheduling algorithms to provide much lower scheduling overhead and more than an order of magnitude better scheduling accuracy in practice than scheduling algorithms without GRR.\",\"PeriodicalId\":417086,\"journal\":{\"name\":\"2005 Symposium on Architectures for Networking and Communications Systems (ANCS)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 Symposium on Architectures for Networking and Communications Systems (ANCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1095890.1095896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 Symposium on Architectures for Networking and Communications Systems (ANCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1095890.1095896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

我们提出了一种基于分组策略的混合公平分组调度框架,该框架缩小了传统公平性与计算复杂性之间的权衡。GRR将其分组策略与专门的轮循调度算法相结合,该算法利用GRR组的属性在组内调度流,以一种仅提供O(1)时间复杂度的O(1)公平性界限的方式。在实际假设GRR使用少量常数组的情况下,我们将GRR应用于流行的公平排队调度算法,并展示了如何使用GRR来实现这些算法的公平性和时间复杂度的恒定界限。我们还提出并证明了使用一致公平性度量的几种公平排队算法的公平界的新结果。我们分析了GRR的行为,并给出了实验结果,证明了GRR如何与现有的调度算法相结合,以提供更低的调度开销,并且在实践中比没有GRR的调度算法提供了一个数量级以上的调度精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Group round robin
We present group round-robin (GRR) scheduling, a hybrid fair packet scheduling framework based on a grouping strategy that narrows down the traditional trade-off between fairness and computational complexity. GRR combines its grouping strategy with a specialized round-robin scheduling algorithm that utilizes the properties of GRR groups to schedule flows within groups in a manner that provides O(1) bounds on fairness with only O(1) time complexity. Under the practical assumption that GRR employs a small constant number of groups, we apply GRR to popular fair queuing scheduling algorithms and show how GRR can be used to achieve constant bounds on fairness and time complexity for these algorithms. We also present and prove new results on the fairness bounds for several of these fair queuing algorithms using a consistent fairness measure. We analyze the behavior of GRR and present experimental results that demonstrate how GRR can be combined with existing scheduling algorithms to provide much lower scheduling overhead and more than an order of magnitude better scheduling accuracy in practice than scheduling algorithms without GRR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信