采用Skyline排序集成法预测存储响应等级

K. Dheenadayalan, V. Muralidhara, Pushpa Datla, G. Srinivasaraghavan, Maulik Shah
{"title":"采用Skyline排序集成法预测存储响应等级","authors":"K. Dheenadayalan, V. Muralidhara, Pushpa Datla, G. Srinivasaraghavan, Maulik Shah","doi":"10.1109/HiPC.2014.7116886","DOIUrl":null,"url":null,"abstract":"Tertiary storage areas are integral parts of compute environment and are primarily used to store vast amount of data that is generated from any scientific/industry workload. Modelling the possible pattern of usage of storage area helps the administrators to take preventive actions and guide users on how to use the storage areas which are tending towards slower to unresponsive state. Treating the storage performance parameters as a time series data helps to predict the possible values for the next `n' intervals using forecasting models like ARIMA. These predicted performance parameters are used to classify if the entire storage area or a logical component is tending towards unresponsiveness. Classification is performed using the proposed Skyline ranked Ensemble model with two possible classes, i.e. high response state and low response state. Heavy load scenarios were simulated and close to 95% of the behaviour were explained using the proposed model.","PeriodicalId":337777,"journal":{"name":"2014 21st International Conference on High Performance Computing (HiPC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Premonition of storage response class using Skyline ranked Ensemble method\",\"authors\":\"K. Dheenadayalan, V. Muralidhara, Pushpa Datla, G. Srinivasaraghavan, Maulik Shah\",\"doi\":\"10.1109/HiPC.2014.7116886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tertiary storage areas are integral parts of compute environment and are primarily used to store vast amount of data that is generated from any scientific/industry workload. Modelling the possible pattern of usage of storage area helps the administrators to take preventive actions and guide users on how to use the storage areas which are tending towards slower to unresponsive state. Treating the storage performance parameters as a time series data helps to predict the possible values for the next `n' intervals using forecasting models like ARIMA. These predicted performance parameters are used to classify if the entire storage area or a logical component is tending towards unresponsiveness. Classification is performed using the proposed Skyline ranked Ensemble model with two possible classes, i.e. high response state and low response state. Heavy load scenarios were simulated and close to 95% of the behaviour were explained using the proposed model.\",\"PeriodicalId\":337777,\"journal\":{\"name\":\"2014 21st International Conference on High Performance Computing (HiPC)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 21st International Conference on High Performance Computing (HiPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HiPC.2014.7116886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 21st International Conference on High Performance Computing (HiPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HiPC.2014.7116886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

三级存储区域是计算环境的组成部分,主要用于存储任何科学/工业工作负载生成的大量数据。对存储区域的可能使用模式进行建模可以帮助管理员采取预防措施,并指导用户如何使用趋向于较慢或无响应状态的存储区域。将存储性能参数视为时间序列数据有助于使用ARIMA等预测模型预测下一个“n”间隔的可能值。这些预测的性能参数用于对整个存储区域或逻辑组件是否趋于无响应进行分类。使用提出的Skyline排序集成模型进行分类,该模型具有两种可能的类别,即高响应状态和低响应状态。模拟了重载场景,并使用所提出的模型解释了接近95%的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Premonition of storage response class using Skyline ranked Ensemble method
Tertiary storage areas are integral parts of compute environment and are primarily used to store vast amount of data that is generated from any scientific/industry workload. Modelling the possible pattern of usage of storage area helps the administrators to take preventive actions and guide users on how to use the storage areas which are tending towards slower to unresponsive state. Treating the storage performance parameters as a time series data helps to predict the possible values for the next `n' intervals using forecasting models like ARIMA. These predicted performance parameters are used to classify if the entire storage area or a logical component is tending towards unresponsiveness. Classification is performed using the proposed Skyline ranked Ensemble model with two possible classes, i.e. high response state and low response state. Heavy load scenarios were simulated and close to 95% of the behaviour were explained using the proposed model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信