应用神经网络对医疗数据进行监督学习

Ourida Ben Boubaker
{"title":"应用神经网络对医疗数据进行监督学习","authors":"Ourida Ben Boubaker","doi":"10.5121/IJDKP.2019.9303","DOIUrl":null,"url":null,"abstract":"Constructing a classification model based on some given patterns is a form of learning from the environment perception. This modelling aims to discover new knowledge embedded in the input observations. Learning behaviour of the neural network model enhances the classification properties. This paper considers artificial neural networks for learning two different medical data sets in term of number of instances. The experiment results confirm that the back-propagation supervised learning algorithm has proved its efficiency for such non-linear classification issues.","PeriodicalId":131153,"journal":{"name":"International Journal of Data Mining & Knowledge Management Process","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"APPLYING NEURAL NETWORKS FOR SUPERVISED LEARNING OF MEDICAL DATA\",\"authors\":\"Ourida Ben Boubaker\",\"doi\":\"10.5121/IJDKP.2019.9303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Constructing a classification model based on some given patterns is a form of learning from the environment perception. This modelling aims to discover new knowledge embedded in the input observations. Learning behaviour of the neural network model enhances the classification properties. This paper considers artificial neural networks for learning two different medical data sets in term of number of instances. The experiment results confirm that the back-propagation supervised learning algorithm has proved its efficiency for such non-linear classification issues.\",\"PeriodicalId\":131153,\"journal\":{\"name\":\"International Journal of Data Mining & Knowledge Management Process\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Mining & Knowledge Management Process\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/IJDKP.2019.9303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining & Knowledge Management Process","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJDKP.2019.9303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于给定模式构建分类模型是一种从环境感知中学习的形式。该建模旨在发现嵌入在输入观察中的新知识。神经网络模型的学习行为增强了分类性能。本文考虑了人工神经网络在实例数方面学习两种不同的医疗数据集。实验结果证实了反向传播监督学习算法对此类非线性分类问题的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
APPLYING NEURAL NETWORKS FOR SUPERVISED LEARNING OF MEDICAL DATA
Constructing a classification model based on some given patterns is a form of learning from the environment perception. This modelling aims to discover new knowledge embedded in the input observations. Learning behaviour of the neural network model enhances the classification properties. This paper considers artificial neural networks for learning two different medical data sets in term of number of instances. The experiment results confirm that the back-propagation supervised learning algorithm has proved its efficiency for such non-linear classification issues.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信