自动训练集生成更好的历史文件转录和压缩

G. Silva, R. Lins, Cesar Gomes
{"title":"自动训练集生成更好的历史文件转录和压缩","authors":"G. Silva, R. Lins, Cesar Gomes","doi":"10.1109/DAS.2014.30","DOIUrl":null,"url":null,"abstract":"The more complete the training set of an optical character recognition platform, the greater the chances of obtaining a better precision in transcription. The development of a database for such purpose is a task of paramount effort as it is performed manually and must be as extensive as possible in order to potentially cover all words in a language. Dealing with historic documents either handwritten, typed, or printed is even a harder effort as documents are often degraded by time and storage conditions. The recent work of Silva-Lins showed how to automatically generate training sets of isolated characters for cursive writing of one specific person. This is particularly important in the transcription of historic files of important people. The present work improves that strategy by analyzing letter ligature patterns. The improvement in OCR transcription accuracy both of printed, typed and handwritten documents is borne out by experimental evidence.","PeriodicalId":220495,"journal":{"name":"2014 11th IAPR International Workshop on Document Analysis Systems","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automatic Training Set Generation for Better Historic Document Transcription and Compression\",\"authors\":\"G. Silva, R. Lins, Cesar Gomes\",\"doi\":\"10.1109/DAS.2014.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The more complete the training set of an optical character recognition platform, the greater the chances of obtaining a better precision in transcription. The development of a database for such purpose is a task of paramount effort as it is performed manually and must be as extensive as possible in order to potentially cover all words in a language. Dealing with historic documents either handwritten, typed, or printed is even a harder effort as documents are often degraded by time and storage conditions. The recent work of Silva-Lins showed how to automatically generate training sets of isolated characters for cursive writing of one specific person. This is particularly important in the transcription of historic files of important people. The present work improves that strategy by analyzing letter ligature patterns. The improvement in OCR transcription accuracy both of printed, typed and handwritten documents is borne out by experimental evidence.\",\"PeriodicalId\":220495,\"journal\":{\"name\":\"2014 11th IAPR International Workshop on Document Analysis Systems\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 11th IAPR International Workshop on Document Analysis Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DAS.2014.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th IAPR International Workshop on Document Analysis Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAS.2014.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

光学字符识别平台的训练集越完备,就越有可能获得较好的转录精度。为此目的开发数据库是一项非常重要的工作,因为它是手动执行的,并且必须尽可能广泛,以便潜在地覆盖一种语言中的所有单词。处理手写、打印或打印的历史文档甚至更加困难,因为文档通常会因时间和存储条件而退化。Silva-Lins最近的工作展示了如何为一个特定的人的草书自动生成孤立字符的训练集。这在记录重要人物的历史档案时尤为重要。目前的工作通过分析字母连接模式来改进这一策略。实验证明,该方法提高了打印、打字和手写文件的OCR转录精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Training Set Generation for Better Historic Document Transcription and Compression
The more complete the training set of an optical character recognition platform, the greater the chances of obtaining a better precision in transcription. The development of a database for such purpose is a task of paramount effort as it is performed manually and must be as extensive as possible in order to potentially cover all words in a language. Dealing with historic documents either handwritten, typed, or printed is even a harder effort as documents are often degraded by time and storage conditions. The recent work of Silva-Lins showed how to automatically generate training sets of isolated characters for cursive writing of one specific person. This is particularly important in the transcription of historic files of important people. The present work improves that strategy by analyzing letter ligature patterns. The improvement in OCR transcription accuracy both of printed, typed and handwritten documents is borne out by experimental evidence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信