递归系统卷积码的权值分布

H. Yoshikawa
{"title":"递归系统卷积码的权值分布","authors":"H. Yoshikawa","doi":"10.1109/ISITA.2008.4895622","DOIUrl":null,"url":null,"abstract":"An analytical bound to bit error probability of turbo codes can be derived by weight distribution of recursive systematic convolutional codes. In this paper, the conditional weight enumerating function of terminated recursive systematic convolutional codes is computed. This form can be expressed as a function of number of information bits, and can reduce the computational complexity of calculation of error bounds. Applying these results, it is shown that improved error bound can be obtained by the conditional weight enumerating function of parallel concatenated convolutional codes.","PeriodicalId":338675,"journal":{"name":"2008 International Symposium on Information Theory and Its Applications","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the weight distribution of recursive systematic convolutional codes\",\"authors\":\"H. Yoshikawa\",\"doi\":\"10.1109/ISITA.2008.4895622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An analytical bound to bit error probability of turbo codes can be derived by weight distribution of recursive systematic convolutional codes. In this paper, the conditional weight enumerating function of terminated recursive systematic convolutional codes is computed. This form can be expressed as a function of number of information bits, and can reduce the computational complexity of calculation of error bounds. Applying these results, it is shown that improved error bound can be obtained by the conditional weight enumerating function of parallel concatenated convolutional codes.\",\"PeriodicalId\":338675,\"journal\":{\"name\":\"2008 International Symposium on Information Theory and Its Applications\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Symposium on Information Theory and Its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISITA.2008.4895622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Symposium on Information Theory and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISITA.2008.4895622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用递归系统卷积码的权值分布,推导出turbo码误码概率的解析界。本文计算了终止递归系统卷积码的条件权枚举函数。这种形式可以表示为信息位数的函数,并且可以降低误差界计算的计算复杂度。应用这些结果表明,利用条件加权枚举函数可以得到改进的误差界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the weight distribution of recursive systematic convolutional codes
An analytical bound to bit error probability of turbo codes can be derived by weight distribution of recursive systematic convolutional codes. In this paper, the conditional weight enumerating function of terminated recursive systematic convolutional codes is computed. This form can be expressed as a function of number of information bits, and can reduce the computational complexity of calculation of error bounds. Applying these results, it is shown that improved error bound can be obtained by the conditional weight enumerating function of parallel concatenated convolutional codes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信