使用从实际使用数据中挖掘的关联规则为Mashup完成推荐api

B. Tapia, Romina Torres, H. Astudillo, Pablo Ortega
{"title":"使用从实际使用数据中挖掘的关联规则为Mashup完成推荐api","authors":"B. Tapia, Romina Torres, H. Astudillo, Pablo Ortega","doi":"10.1109/SCCC.2011.12","DOIUrl":null,"url":null,"abstract":"Mashups are becoming the de facto approach to build customer-oriented Web applications, by combining several Web APIs into a single lightweight, rich, customized Web front-end. To help mashup builders to choose among a plethora of available APIs to assemble in their mashups, some existing recommendation techniques rank candidate APIs using popularity (a social measure) or keyword-based measures (whether semantic or unverified tags). This article proposes to use information on co-usage of APIs in previous mash ups to suggest likely candidate APIs, and introduces a global measure which improves on earlier local co-API measures. The gCAR (global Co-utilization API Ranking) is calculated using association rules inferred from historical API usage data. The MashupRECO tool combines gCAR and a keywordbased measure, to avoid the \"cold-start\" problem for new or unused APIs. Evaluation of MashupRECO versus the keyword search of the well-known ProgrammableWeb catalog show that the tool reduces the search time for comparable degree of completeness.","PeriodicalId":173639,"journal":{"name":"2011 30th International Conference of the Chilean Computer Science Society","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Recommending APIs for Mashup Completion Using Association Rules Mined from Real Usage Data\",\"authors\":\"B. Tapia, Romina Torres, H. Astudillo, Pablo Ortega\",\"doi\":\"10.1109/SCCC.2011.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mashups are becoming the de facto approach to build customer-oriented Web applications, by combining several Web APIs into a single lightweight, rich, customized Web front-end. To help mashup builders to choose among a plethora of available APIs to assemble in their mashups, some existing recommendation techniques rank candidate APIs using popularity (a social measure) or keyword-based measures (whether semantic or unverified tags). This article proposes to use information on co-usage of APIs in previous mash ups to suggest likely candidate APIs, and introduces a global measure which improves on earlier local co-API measures. The gCAR (global Co-utilization API Ranking) is calculated using association rules inferred from historical API usage data. The MashupRECO tool combines gCAR and a keywordbased measure, to avoid the \\\"cold-start\\\" problem for new or unused APIs. Evaluation of MashupRECO versus the keyword search of the well-known ProgrammableWeb catalog show that the tool reduces the search time for comparable degree of completeness.\",\"PeriodicalId\":173639,\"journal\":{\"name\":\"2011 30th International Conference of the Chilean Computer Science Society\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 30th International Conference of the Chilean Computer Science Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCCC.2011.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 30th International Conference of the Chilean Computer Science Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCCC.2011.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

mashup正在成为构建面向客户的Web应用程序的事实上的方法,它将几个Web api组合到一个轻量级的、丰富的、定制的Web前端中。为了帮助mashup构建者在大量可用的api中进行选择,以便将其组装到mashup中,一些现有的推荐技术使用流行度(一种社会度量)或基于关键字的度量(无论是语义标记还是未经验证的标记)对候选api进行排名。本文建议使用以前混搭中api的共同使用信息来建议可能的候选api,并引入一个全局度量,该度量改进了早期的本地共同api度量。gCAR(全球共同利用API排名)是使用从历史API使用数据推断出的关联规则来计算的。MashupRECO工具结合了gCAR和基于关键字的度量,以避免新api或未使用api的“冷启动”问题。对MashupRECO与著名的ProgrammableWeb目录的关键字搜索的评估表明,该工具在相当程度的完整性方面减少了搜索时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recommending APIs for Mashup Completion Using Association Rules Mined from Real Usage Data
Mashups are becoming the de facto approach to build customer-oriented Web applications, by combining several Web APIs into a single lightweight, rich, customized Web front-end. To help mashup builders to choose among a plethora of available APIs to assemble in their mashups, some existing recommendation techniques rank candidate APIs using popularity (a social measure) or keyword-based measures (whether semantic or unverified tags). This article proposes to use information on co-usage of APIs in previous mash ups to suggest likely candidate APIs, and introduces a global measure which improves on earlier local co-API measures. The gCAR (global Co-utilization API Ranking) is calculated using association rules inferred from historical API usage data. The MashupRECO tool combines gCAR and a keywordbased measure, to avoid the "cold-start" problem for new or unused APIs. Evaluation of MashupRECO versus the keyword search of the well-known ProgrammableWeb catalog show that the tool reduces the search time for comparable degree of completeness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信