M. Inoue, Y. Yamasaki, K. Suganuma, T. Kawasaki, T. Rokuhara, T. Miyashita, H. Ishiguro
{"title":"机器人及相关设备人造皮肤用导电胶粘剂超柔丝的研制","authors":"M. Inoue, Y. Yamasaki, K. Suganuma, T. Kawasaki, T. Rokuhara, T. Miyashita, H. Ishiguro","doi":"10.1109/POLYTR.2005.1596494","DOIUrl":null,"url":null,"abstract":"The super-flexible wires, which can withstand significant stretch as well as bend, are successfully developed by using the conductive adhesive containing Ag particles dispersed in a silicone-based binder. After curing under suitable conditions, the electrical conduction in the adhesive was detectable until the elongation reached to 100-180 %. Furthermore, the electric resistance was almost recovered after removing tensile stress. This wiring technology was applied for fabricating a prototype sensor sheet for artificial skin applications of robots and related equipments. The piezoelectric films composed of poly(vinylidene fluoride) were assembled on a silicone substrate by using the silicone-based conductive adhesive in order to fabricate the sensor sheet. The information related to pressure distribution was monitored successfully when we toughed the sensor sheet.","PeriodicalId":436133,"journal":{"name":"Polytronic 2005 - 5th International Conference on Polymers and Adhesives in Microelectronics and Photonics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Development of Super-Flexible Wires Using Conductive Adhesives for Artificial Skin Applications of Robots and Related Equipments\",\"authors\":\"M. Inoue, Y. Yamasaki, K. Suganuma, T. Kawasaki, T. Rokuhara, T. Miyashita, H. Ishiguro\",\"doi\":\"10.1109/POLYTR.2005.1596494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The super-flexible wires, which can withstand significant stretch as well as bend, are successfully developed by using the conductive adhesive containing Ag particles dispersed in a silicone-based binder. After curing under suitable conditions, the electrical conduction in the adhesive was detectable until the elongation reached to 100-180 %. Furthermore, the electric resistance was almost recovered after removing tensile stress. This wiring technology was applied for fabricating a prototype sensor sheet for artificial skin applications of robots and related equipments. The piezoelectric films composed of poly(vinylidene fluoride) were assembled on a silicone substrate by using the silicone-based conductive adhesive in order to fabricate the sensor sheet. The information related to pressure distribution was monitored successfully when we toughed the sensor sheet.\",\"PeriodicalId\":436133,\"journal\":{\"name\":\"Polytronic 2005 - 5th International Conference on Polymers and Adhesives in Microelectronics and Photonics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polytronic 2005 - 5th International Conference on Polymers and Adhesives in Microelectronics and Photonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/POLYTR.2005.1596494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polytronic 2005 - 5th International Conference on Polymers and Adhesives in Microelectronics and Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/POLYTR.2005.1596494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of Super-Flexible Wires Using Conductive Adhesives for Artificial Skin Applications of Robots and Related Equipments
The super-flexible wires, which can withstand significant stretch as well as bend, are successfully developed by using the conductive adhesive containing Ag particles dispersed in a silicone-based binder. After curing under suitable conditions, the electrical conduction in the adhesive was detectable until the elongation reached to 100-180 %. Furthermore, the electric resistance was almost recovered after removing tensile stress. This wiring technology was applied for fabricating a prototype sensor sheet for artificial skin applications of robots and related equipments. The piezoelectric films composed of poly(vinylidene fluoride) were assembled on a silicone substrate by using the silicone-based conductive adhesive in order to fabricate the sensor sheet. The information related to pressure distribution was monitored successfully when we toughed the sensor sheet.