T. Inagaki, Yohei Ueda, T. Nakaike, Moriyoshi Ohara
{"title":"基于配置文件的分层瓶颈检测","authors":"T. Inagaki, Yohei Ueda, T. Nakaike, Moriyoshi Ohara","doi":"10.1145/3297663.3310296","DOIUrl":null,"url":null,"abstract":"Detection of software bottlenecks which hinder utilizing hardware resources is a classic but complex problem due to the layered structures of the software bottlenecks. However, model-based approaches require a performance model given, which is impractical to maintain under today's agile development environment, and profile-based approaches do not handle the layered structures of the software bottlenecks. This paper proposes a novel approach of taking the best of both worlds which extracts a performance model from execution profiles of the target application to detect the layered bottlenecks. We collect a wake-up profile of threads, which samples an event that one thread wakes up another thread, and build a thread dependency graph to detect the layered bottlenecks. We implement our approach of profile-based detection of layered bottlenecks in the Go programming language. We demonstrate that our method can detect software bottlenecks limiting scalability and throughput of state-of-the-art middleware such as a web application server and a permissioned blockchain network, with small amount of the runtime overhead for profile collection.","PeriodicalId":273447,"journal":{"name":"Proceedings of the 2019 ACM/SPEC International Conference on Performance Engineering","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Profile-based Detection of Layered Bottlenecks\",\"authors\":\"T. Inagaki, Yohei Ueda, T. Nakaike, Moriyoshi Ohara\",\"doi\":\"10.1145/3297663.3310296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detection of software bottlenecks which hinder utilizing hardware resources is a classic but complex problem due to the layered structures of the software bottlenecks. However, model-based approaches require a performance model given, which is impractical to maintain under today's agile development environment, and profile-based approaches do not handle the layered structures of the software bottlenecks. This paper proposes a novel approach of taking the best of both worlds which extracts a performance model from execution profiles of the target application to detect the layered bottlenecks. We collect a wake-up profile of threads, which samples an event that one thread wakes up another thread, and build a thread dependency graph to detect the layered bottlenecks. We implement our approach of profile-based detection of layered bottlenecks in the Go programming language. We demonstrate that our method can detect software bottlenecks limiting scalability and throughput of state-of-the-art middleware such as a web application server and a permissioned blockchain network, with small amount of the runtime overhead for profile collection.\",\"PeriodicalId\":273447,\"journal\":{\"name\":\"Proceedings of the 2019 ACM/SPEC International Conference on Performance Engineering\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 ACM/SPEC International Conference on Performance Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3297663.3310296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 ACM/SPEC International Conference on Performance Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3297663.3310296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detection of software bottlenecks which hinder utilizing hardware resources is a classic but complex problem due to the layered structures of the software bottlenecks. However, model-based approaches require a performance model given, which is impractical to maintain under today's agile development environment, and profile-based approaches do not handle the layered structures of the software bottlenecks. This paper proposes a novel approach of taking the best of both worlds which extracts a performance model from execution profiles of the target application to detect the layered bottlenecks. We collect a wake-up profile of threads, which samples an event that one thread wakes up another thread, and build a thread dependency graph to detect the layered bottlenecks. We implement our approach of profile-based detection of layered bottlenecks in the Go programming language. We demonstrate that our method can detect software bottlenecks limiting scalability and throughput of state-of-the-art middleware such as a web application server and a permissioned blockchain network, with small amount of the runtime overhead for profile collection.