粗糙集多知识抽取算法及其形式化概念分析

Z. Zhu, Hui Li, Guangyao Dai, A. Abraham, Wanqing Yang
{"title":"粗糙集多知识抽取算法及其形式化概念分析","authors":"Z. Zhu, Hui Li, Guangyao Dai, A. Abraham, Wanqing Yang","doi":"10.1109/ISDA.2014.7066261","DOIUrl":null,"url":null,"abstract":"Rough set theory provides an effective method to reduce attributes and extract knowledge. This paper represents a rough set multi-knowledge extraction algorithm and its formal concept analysis. The proposed algorithm can obtain multi-reducts by using rough set in decision table. The formal concept analysis is used to obtain rules from the main values of the attributes influencing the decision making and these rules build a multi-knowledge. Experimental results show that the proposed multi-knowledge extraction algorithm is efficient.","PeriodicalId":328479,"journal":{"name":"2014 14th International Conference on Intelligent Systems Design and Applications","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A rough set multi-knowledge extraction algorithm and its formal concept analysis\",\"authors\":\"Z. Zhu, Hui Li, Guangyao Dai, A. Abraham, Wanqing Yang\",\"doi\":\"10.1109/ISDA.2014.7066261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rough set theory provides an effective method to reduce attributes and extract knowledge. This paper represents a rough set multi-knowledge extraction algorithm and its formal concept analysis. The proposed algorithm can obtain multi-reducts by using rough set in decision table. The formal concept analysis is used to obtain rules from the main values of the attributes influencing the decision making and these rules build a multi-knowledge. Experimental results show that the proposed multi-knowledge extraction algorithm is efficient.\",\"PeriodicalId\":328479,\"journal\":{\"name\":\"2014 14th International Conference on Intelligent Systems Design and Applications\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 14th International Conference on Intelligent Systems Design and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2014.7066261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 14th International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2014.7066261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

粗糙集理论提供了一种有效的属性约简和知识提取方法。提出了一种粗糙集多知识抽取算法及其形式化概念分析。该算法利用决策表中的粗糙集进行多次约简。通过形式概念分析,从影响决策的属性的主要值中获得规则,这些规则构建了多知识。实验结果表明,所提出的多知识提取算法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A rough set multi-knowledge extraction algorithm and its formal concept analysis
Rough set theory provides an effective method to reduce attributes and extract knowledge. This paper represents a rough set multi-knowledge extraction algorithm and its formal concept analysis. The proposed algorithm can obtain multi-reducts by using rough set in decision table. The formal concept analysis is used to obtain rules from the main values of the attributes influencing the decision making and these rules build a multi-knowledge. Experimental results show that the proposed multi-knowledge extraction algorithm is efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信