用Lasso和Dantzig选择器选择线性分类器中的信息基因

Songfeng Zheng, Weixiang Liu
{"title":"用Lasso和Dantzig选择器选择线性分类器中的信息基因","authors":"Songfeng Zheng, Weixiang Liu","doi":"10.1109/BIBM.2010.5706651","DOIUrl":null,"url":null,"abstract":"Automatically selecting a subset of genes with strong discriminative power is a very important step in classification problems based on gene expression data. Lasso and Dantzig selector are known to have automatic variable selection ability in linear regression analysis. This paper employs Lasso and Dantzig selector to select most informative genes for representing the class label as a linear function of gene expression data. The selected genes are further used to fit linear classifiers for cancer classification. On 3 publicly available cancer datasets, the experimental results show that in general, Lasso is more capable than Dantzig selector in selecting informative genes for classification.","PeriodicalId":275098,"journal":{"name":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Selecting informative genes by Lasso and Dantzig selector for linear classifiers\",\"authors\":\"Songfeng Zheng, Weixiang Liu\",\"doi\":\"10.1109/BIBM.2010.5706651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatically selecting a subset of genes with strong discriminative power is a very important step in classification problems based on gene expression data. Lasso and Dantzig selector are known to have automatic variable selection ability in linear regression analysis. This paper employs Lasso and Dantzig selector to select most informative genes for representing the class label as a linear function of gene expression data. The selected genes are further used to fit linear classifiers for cancer classification. On 3 publicly available cancer datasets, the experimental results show that in general, Lasso is more capable than Dantzig selector in selecting informative genes for classification.\",\"PeriodicalId\":275098,\"journal\":{\"name\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2010.5706651\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2010.5706651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在基于基因表达数据的分类问题中,自动选择具有强判别能力的基因子集是非常重要的一步。Lasso和Dantzig选择器在线性回归分析中具有自动变量选择能力。本文采用Lasso和Dantzig选择器选择信息量最大的基因,将类标签表示为基因表达数据的线性函数。选择的基因进一步用于拟合线性分类器进行癌症分类。在3个公开的癌症数据集上,实验结果表明,总的来说,Lasso比Dantzig选择器更能选择信息基因进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Selecting informative genes by Lasso and Dantzig selector for linear classifiers
Automatically selecting a subset of genes with strong discriminative power is a very important step in classification problems based on gene expression data. Lasso and Dantzig selector are known to have automatic variable selection ability in linear regression analysis. This paper employs Lasso and Dantzig selector to select most informative genes for representing the class label as a linear function of gene expression data. The selected genes are further used to fit linear classifiers for cancer classification. On 3 publicly available cancer datasets, the experimental results show that in general, Lasso is more capable than Dantzig selector in selecting informative genes for classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信