基于估计器的采样数据鲁棒反馈线性化

Asim Zaheer, Y. Ayaz, Momena Hasan, M. Salman
{"title":"基于估计器的采样数据鲁棒反馈线性化","authors":"Asim Zaheer, Y. Ayaz, Momena Hasan, M. Salman","doi":"10.1109/AMC.2016.7496363","DOIUrl":null,"url":null,"abstract":"In this paper, robust control schemes are presented to achieve sampled-data output feedback tracking, for the cases of unknown and known nonlinear minimum phase second order plant (system) models. For known system model case, system output tracks reference trajectory using Extended Kalman Filter (EKF), Unscented Kalman filter (UKF), and Cubature Kalman Filter (CKF). Whereas, for unknown system model case; EKF, UKF and CKF cannot be utilized. For this case, in this paper; State-Space Recursive Least Squares (SSRLS) and Sliding Mode observer (SMO) are employed. SSRLS uses constant velocity model, whereas, SMO requires information about input function only, to track the reference signal. Emulation Design based discrete feedback linearization controller utilizes estimated states to generate control input for plant. The robustness of these sampled-data output feedback control schemes (using estimators) against disturbance and parameter perturbation is demonstrated. It is presented via simulations for magnetic levitation system, that robust tracking is achieved on using estimators (Kalman filters and SMO) in sampled-data output feedback configuration as compared to performing tracking using sampled-data state feedback scheme. Simulation results show that SMO based output feedback tracking is most robust, followed by CKF and EKF based output feedback scheme. UKF based output feedback scheme is robust against external disturbance force, but for case of system parameter perturbation, UKF tracking error takes longer time to converge. SSRLS based scheme behaves poorly in presence of external disturbance force, as SSRLS estimation is based on constant velocity model and not on actual nonlinear system model.","PeriodicalId":273847,"journal":{"name":"2016 IEEE 14th International Workshop on Advanced Motion Control (AMC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sampled-data robust feedback linearization using estimator\",\"authors\":\"Asim Zaheer, Y. Ayaz, Momena Hasan, M. Salman\",\"doi\":\"10.1109/AMC.2016.7496363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, robust control schemes are presented to achieve sampled-data output feedback tracking, for the cases of unknown and known nonlinear minimum phase second order plant (system) models. For known system model case, system output tracks reference trajectory using Extended Kalman Filter (EKF), Unscented Kalman filter (UKF), and Cubature Kalman Filter (CKF). Whereas, for unknown system model case; EKF, UKF and CKF cannot be utilized. For this case, in this paper; State-Space Recursive Least Squares (SSRLS) and Sliding Mode observer (SMO) are employed. SSRLS uses constant velocity model, whereas, SMO requires information about input function only, to track the reference signal. Emulation Design based discrete feedback linearization controller utilizes estimated states to generate control input for plant. The robustness of these sampled-data output feedback control schemes (using estimators) against disturbance and parameter perturbation is demonstrated. It is presented via simulations for magnetic levitation system, that robust tracking is achieved on using estimators (Kalman filters and SMO) in sampled-data output feedback configuration as compared to performing tracking using sampled-data state feedback scheme. Simulation results show that SMO based output feedback tracking is most robust, followed by CKF and EKF based output feedback scheme. UKF based output feedback scheme is robust against external disturbance force, but for case of system parameter perturbation, UKF tracking error takes longer time to converge. SSRLS based scheme behaves poorly in presence of external disturbance force, as SSRLS estimation is based on constant velocity model and not on actual nonlinear system model.\",\"PeriodicalId\":273847,\"journal\":{\"name\":\"2016 IEEE 14th International Workshop on Advanced Motion Control (AMC)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 14th International Workshop on Advanced Motion Control (AMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AMC.2016.7496363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 14th International Workshop on Advanced Motion Control (AMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMC.2016.7496363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对未知和已知非线性最小相位二阶系统模型,提出了实现采样数据输出反馈跟踪的鲁棒控制方案。对于已知的系统模型情况,系统输出使用扩展卡尔曼滤波器(EKF)、无气味卡尔曼滤波器(UKF)和Cubature卡尔曼滤波器(CKF)跟踪参考轨迹。对于未知的系统模型情况;不能使用EKF、UKF和CKF。对于这种情况,在本文中;采用状态空间递推最小二乘(SSRLS)和滑模观测器(SMO)。SSRLS采用恒速模型,而SMO只需要输入函数的信息来跟踪参考信号。基于仿真设计的离散反馈线性化控制器利用预估状态生成被控对象的控制输入。证明了这些采样数据输出反馈控制方案(使用估计器)对扰动和参数扰动的鲁棒性。通过对磁悬浮系统的仿真表明,与使用采样数据状态反馈方案进行跟踪相比,在采样数据输出反馈配置中使用估计器(卡尔曼滤波器和SMO)可以实现鲁棒跟踪。仿真结果表明,基于SMO的输出反馈跟踪鲁棒性最强,其次是基于CKF和EKF的输出反馈方案。基于UKF的输出反馈方案对外部扰动力具有鲁棒性,但在系统参数扰动情况下,UKF跟踪误差需要较长的收敛时间。由于SSRLS估计是基于恒速模型,而不是基于实际的非线性系统模型,因此基于SSRLS的方案在存在外部扰动力时表现不佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sampled-data robust feedback linearization using estimator
In this paper, robust control schemes are presented to achieve sampled-data output feedback tracking, for the cases of unknown and known nonlinear minimum phase second order plant (system) models. For known system model case, system output tracks reference trajectory using Extended Kalman Filter (EKF), Unscented Kalman filter (UKF), and Cubature Kalman Filter (CKF). Whereas, for unknown system model case; EKF, UKF and CKF cannot be utilized. For this case, in this paper; State-Space Recursive Least Squares (SSRLS) and Sliding Mode observer (SMO) are employed. SSRLS uses constant velocity model, whereas, SMO requires information about input function only, to track the reference signal. Emulation Design based discrete feedback linearization controller utilizes estimated states to generate control input for plant. The robustness of these sampled-data output feedback control schemes (using estimators) against disturbance and parameter perturbation is demonstrated. It is presented via simulations for magnetic levitation system, that robust tracking is achieved on using estimators (Kalman filters and SMO) in sampled-data output feedback configuration as compared to performing tracking using sampled-data state feedback scheme. Simulation results show that SMO based output feedback tracking is most robust, followed by CKF and EKF based output feedback scheme. UKF based output feedback scheme is robust against external disturbance force, but for case of system parameter perturbation, UKF tracking error takes longer time to converge. SSRLS based scheme behaves poorly in presence of external disturbance force, as SSRLS estimation is based on constant velocity model and not on actual nonlinear system model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信